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Abstract

We discuss the problem of two quantum particles con"ned to a circular billiard, interacting
through a Yukawa potential and subjected to a weak constant magnetic "eld. From the statistical
analysis of the energy spectrum, we show that the system presents a very interesting oscillation
between quantum regular and irregular (chaotic) behavior as a function of the masses ratio of
the particles.
c© 2004 Elsevier B.V. All rights reserved.
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Many-particle problems are of fundamental importance in all branches of Physics,
such as celestial mechanics, nuclear and particle physics, etc. For a long time, aspects
such as the number of constituents, kind of interactions and type of boundary conditions
are well known to strongly determine the di?erent qualitative regimes for the systems
dynamics. However, only recently the role played by the ratio between the parti-
cles masses has been addressed. In 1D problems, ergodic and non-ergodic motion
in classical systems were obtained both by changing the masses ratio of particles with
contact interactions [1–4] and by introducing a Yukawa potential between identical
particles [5].
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In the quantum case little exists along this line. In 1D, it has been shown that:
(i) the level spacing distribution for two interacting particles in a hard-wall billiard is
neither purely Poisson or Gaussian orthogonal ensemble (GOE) [6]; and (ii) a transition
from regular to irregular spectra takes place for two con"ned particles interacting by
short-range potentials when the masses ratio is changed [7].

For 2D problems, results are even more scarce, with few studies done for square
billiards with two interacting particles: (iii) for identical spin 1

2 particles, both the
symmetries of the con"ning potential and the singlet/triplet crossings lead to a non-GOE
spectral distribution [8]; and (iv) if one of the particles is much heavier, acting like a
s-wave scatterer, the energy levels of the problem reveal similar features of those seen
in Aharonov–Bohm systems [9].

In this contribution, we discuss a new example of the inLuence of the masses ratio
on the statistics of the quantum spectra. We consider two interacting particles under the
action of a weak constant magnetic "eld. However, here we assume as the con"nement
a circular billiard, which as far as we know has not been analyzed in the literature.

In polar coordinates and in arbitrary units the Hamiltonian (with the weak magnetic
"eld perpendicular to the billiard), is given by

H = H (1)
0 + H (2)

0 + V (r12); H ( j)
0 =

p2
j

2�j
+

BL( j)
z

2�j
; V (r12) = V0

e−
r12

r12
: (1)

In Eq. (1), r12=|̃r1−r̃2|=
√

r2
1 + r2

2 − 2r1r2 cos(
1 − 
2) is the relative distance, with �j

and L( j)
z = 1

i 9=9
j being, respectively, the mass and the angular momentum z-component
of particle j. B is the intensity of the external magnetic "eld. The interaction V (r12) (a
Yukawa potential) has strength V0 and length action 
. Regarding this last parameter,
we can have short (e.g., 
 = 10) and long (e.g., 5 × 10−3) range interaction regimes.
While for the "rst example, the particles feel each other over about 0:25 r0, in the
second their interaction extends over the whole billiard. The con"nement e?ect is taken
into account by assuming that the wave function must vanishes at the circular billiard
boundary r = r0.

The one-particle H ( j)
0 is a textbook problem, whose eigenstates are given by

 mjnj (rj; 
j) = Cmjnj Jmj (kmjnj rj) exp[ ± imj
j] ; (2)

where J is the Bessel function and Cmjnj =[r0
√
�Jmj+1(kmjnj r0)]

−1 is the normalization
constant. The angular momentum quantum numbers are mj = 0; 1; 2; : : :. The eigenen-
ergies are given by E(0)

mjnj = [k2
mjnj ± Bmj]=(2�j), where r0kmjnj is the njth root of the

Bessel function of order mj.
To diagonalize the full two-particles H , we use as a base the complete set {��1�2

(r1; 
1; r2; 
2) =  m1n1 (r1; 
1) m2n2 (r2; 
2)}, with �j ≡ (mjnj). For our purposes in this
work, we are going to consider that even for same masses the particles are always
distinguishable. The matrix elements are then

H�� = 〈��1�2 |H0|��1�2〉 + 〈��1�2 |V (r12)|��1�2〉; (3)

where �j = (mjnj) and �j = (qjlj). The "rst term in the right-hand side of (3) results
trivially in (Em1n1 +Em2n2 )�m1q1�m2q2�n1l1�n2l2 , contributing just to the diagonal elements
of H . The second, I = 〈��1�2 |V (r12)|��1�2〉, has to be calculated. With the help of the
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transformations 
− = 
1 − 
2 and 
+ = 
1 + 
2, the integrals in I are simpli"ed and the
integration over 
+ can be performed analytically. After some straightforward analyzes,
it is possible to show that I is di?erent from zero only for L=m1+m2=q1+q2, implying
that the total angular momentum L is conserved. So, H has a block structure and we
can separate the energy levels according to the values of L. For m1 +m2 = q1 + q2, we
have (with C a short-hand for the product of the normalization constants)

I = C
∫ 2�

0
d
−

∫ r0

0
r1 dr1

∫ r0

0
r2 dr2(4� − 2
−) cos[(q1 − m1)
−]

Jm1 (km1n1r1)Jm2 (km2n2r2) exp
[
−
r12

r12

]
Jq1 (kq1l1r1)Jq1 (kq1l1r2): (4)

The above integral must be evaluated numerically. Although there are analytical
methods [10] to regularize the original Hamiltonian, in order to overcome possible
diNculties with the singularity at r̃1 = r̃2, here we use a simpler numerical procedure.
The integration over r1 and r2 is done in two parts. In the "rst (second), r2 (r1) goes
from 0 to r1(r2) − � and r1 (r2) from � to r0. So, � represents how much we are far
from the line r̃1 = r̃2, which has to be avoided. The calculations are then performed for
decreasing values of �. For � between 10−4 and 10−8 the integral converges, where
the very small di?erences for I within this range is negligible for the seeking precision.

The eigenvalues of the matrix H were determined for a large combination of the
parameters V0, 
, �=�2=�1 (the masses ratio), and the billiard radius is r0 =1:0. Next,
we discuss only few of such combinations, but which already help us to "gure out
what is the main feature responsible for the emergence of quantum chaotic behav-
ior in this two-particles 2D system. We diagonalize 1600 × 1600 matrices, which for
the parameters values considered do assure the convergence of the eigenvalues about
four "gures for the "rst 800 levels. We construct two spectrum probabilities: (a) the
nearest neighbor spacing distribution P(s), which tells what is the distribution of dis-
tances (in terms of the “unfolded” energy s) between two successive energy levels; and
(b) the spectral rigidity Q3(l), which basically represents how much (within a nor-
malized energy interval of length l) the cumulative number of states deviates from a
straight line. For a detailed explanation of how to calculate these distributions see, for
instance, Ref. [11].

Figure 1 shows the results of the level statistics for the case of equal masses (�=1),
angular momentum L=0, potential strength V0 =10 and long interaction range 
=5×
10−3. In the "gures, the solid and the dashed lines represent, respectively, the results
expecting from a Poisson and GOE level distribution. The Poisson (GOE) distribution is
typical for a general quantum system whose corresponding classical system is integrable
(chaotic). The histogram (Fig. 1(a)) and dotted line (Fig. 1(b)) represent our numerical
calculations, where we have used about 600 levels. We observe from Fig. 1 that the
statistical level analysis of equal masses particles con"ned to a circular billiard agrees
very well with the case of integrable systems.

Quantum chaos can be observed for di?erent values for the masses ratio. An
example is shown in Fig. 2, where � = 15 and all the other parameters are the same
as those in Fig. 1. The numerical results now agree with the chaotic level statistics.
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Fig. 1. (a) P(s) and (b) "3(l) statistics for equal masses (� = 1), V0 = 10, B = 0:1, and 
 = 5 × 10−3.

Fig. 2. (a,b) The same as in Fig. 1 but for � = 15.

This particular case can be understood from an analogy with the annular billiard [12],
known to be chaotic if the inner barrier (a disk) is not placed at the center of the
billiard. Since in our example one particle is 15 times heavier, its kinetic energy is
much less a?ected by the mutual interaction. So, it acts just like a potential barrier for
the other particle, exactly as in the annular billiard.

From the above we see that, as a function of �, two limits for the quantum dynamics
emerge: the regular for �=1 and the chaotic for �=15. Thus, � seems to be a control
parameter to induce quantum chaos in the system. Similar analysis were performed for
many other values of the masses ratio. The results are summarized in Fig. 3, where
for the "3 statistics a “bending” coeNcient D is plotted for 85 di?erent values of �.
We de"ne D = ["3(20) − 0:3]=20, where "3(20) is the actual numerically calculated
"3 statistics at l= 20 and 0.3 is its value in the theoretical chaotic (dashed line) case.
If the quantity D approaches zero, the problem can be considered more chaotic. On
the other hand, if D increases, it is more regular. Thus, Fig. 3 gives an idea of the
“degree of chaoticity” in terms of �. Although an overall decaying can be observed
for � increasing, so the system tends to be fully chaotic for larger �’s, for some
speci"c values we see peaks, indicating a more regular behavior. These results are
quite interesting, the quantum system oscillates between a more regular and a more
irregular dynamics depending on the masses ratio.
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Fig. 3. The “bending” coeNcient D as a function of the masses ratio � for V0 =10, B=0:1, and 
=5×10−3.

Qualitatively, Fig. 3 is in accordance with a recently proposed explanation [7] for
the presence (or not) of chaos in few-particles problems. Quantum chaotic behavior
may be linked to the ergodicity in the corresponding classical case, which by its turn
depends on �. Indeed, systems like those in Refs. [1–4] are integrable just for a very
speci"c values of the masses ratio. For all other values the systems are ergodic due to
the momentum transfer between the particles during collisions.

To conclude, the emergence of quantum chaos is studied for a system of two
particles interacting via a Yukawa potential, subjected to a weak constant magnetic
"eld, and con"ned to a circular billiard. Eigenvalues are determined numerically and
the level statistics are studied for di?erent values of the masses ratio � = �2=�1. By
increasing �, the system tends to be totally chaotic. However, for some speci"c values
of the masses ratio (within the range 16 �¡ 15), regular behavior seems to exist.
A possible explanation may be related to the break of ergodicity for certain �’s in
the underlying classical case, a phenomenon already seen in 1D interacting particle
systems. Investigations in this line are under progress and will be reported in the due
course.
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