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Quantum dots as parafermion detectors
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Parafermionic zero modes, Zn-symmetric generalizations of the well-known Z2 Majorana zero modes, can
emerge as edge states in topologically nontrivial strongly correlated systems displaying fractionalized excita-
tions. In this paper, we investigate how signatures of parafermionic zero modes can be detected by its effects on
the properties of a quantum dot tunnel-coupled to a system hosting such states. Concretely, we consider a strongly
correlated one-dimensional fermionic model supporting Z4 parafermionic zero modes coupled to an interacting
quantum dot at one of its ends. By using a combination of density matrix renormalization group calculations and
analytical approaches, we show that the dot’s zero-energy spectral function and average occupation numbers can
be used to distinguish between trivial, Z4 and 2 × Z2 phases of the system. The present work opens the prospect
of using quantum dots as detection tools to probe nontrivial topological phases in strongly correlated systems.
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I. INTRODUCTION

The production and detection of quasiparticles with statis-
tics which are neither fermionic or bosonic is a fundamental
quest in condensed matter physics. Proposals for the realiza-
tion of such quasiparticles (dubbed anyons [1]) have been put
forward over the years, and recent experimental findings seem
to confirm their existence [2,3]. A particular type of anyons
with non-Abelian exchange statistics has been gathering at-
tention for the past few years [4] as their exotic properties
make them ideal platforms to realize topological quantum
computers (TQCs) [5–7].

Majorana zero modes (MZMs) are currently the main can-
didates for realizing TQCs based on non-Abelian anyonic
exchange statistics of the Ising type [8–10]. However, quan-
tum gates based on Ising braiding are, by definition, limited
in scope. The reason being that the braiding of Ising anyons
amounts to a π/2 qbit rotation in the Block sphere [5].
As such, the prospect of using parafermionic modes as the
building blocks for more generic quantum gates can expand
these possibilities due to their Fibonacci-type braiding statis-
tics [11,12].

Parafermionic modes can be viewed as Zn generaliza-
tions of Z2-symmetric MZMs. They were first proposed
in the context of clock-models [13,14], and later used to
describe exotic fractional quantum Hall excitations [15].
Recently, parafermions have been subjected to renewed inter-
est [16–20], as parallels of parafermionic- and MZM-hosting
systems were suggested [14,21].

Due to their unusual nature, proposals for the experimen-
tal realization of parafermionic zero modes (PZMs) usually
rely on finding Zn-symmetric ground states of effective
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low-energy models [22–25]. Only recently a Kitaev-type lat-
tice model hosting free PZMs was mapped into a strongly
interacting model of (spinful) fermionic particles in a one-
dimensional (1D) lattice [26,27]. Although these models
might look somewhat unrealistic due to the presence of rather
exotic three-body interaction terms, they offer a concrete path
to realizations of parafermions in electronic systems, sim-
ilar to the role the Kitaev chain played for the Majorana
zero modes almost 20 years ago [8]. Nonetheless, several
questions remain open, from possible realizations of different
parafermions to their experimental signature.

In this paper, we address these questions by proposing
the use of quantum dots (QD) as an experimental probe to
detect the signature of parafermionic modes similar to zero-
bias peaks predicted in Majorana-quantum dot setups [28–32].
Here, we focus on QDs coupled to topological 1D systems
hosting Z4 PZMs at their edges [26,27,33,34].

Our results show that experimentally readily accessible QD
properties such as the local density of states and occupation
number can be used to distinguish the different topological
phases of the system, indicating the presence or absence of
edge PZMs. More importantly, the QD signatures can distin-
guish between phases of local Z4 parafermionic modes and
those comprised of two Z2 Majorana modes.

The paper is organized as follows: in Sec. II, we introduce
the model Hamiltonian for a chain with dangling parafermion
modes and the coupling term to an interacting quantum dot.
The system’s phase diagram, calculated with the density-
matrix renormalization group (DMRG) method, is presented
in Sec. III, along with results showing that zero-energy density
of states calculated at the dot site can probe the different
phases. These results are further discussed in Sec. IV, where
we show how the dot’s local density of states (LDOS) and
average occupancy can be used to distinguish between trivial,
Z4 and 2 × Z2 phases. In Sec. V, we show that the DMRG
results for the Z4 phase can be understood by an analytical
calculation of the first-order corrections in the dot coupling.
Finally, our concluding remarks are presented in Sec. VI.
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FIG. 1. Parafermion chain coupled to a quantum dot. The dot has
an electron-electron repulsion given by Ud and an energy given by εd

controlled by the gate voltage Vg. The chain is coupled to the dot
by a hopping with an Andreev reflection given with strength td . The
chain has two dangling parafermions at the edges χ and ψ when
t = W = �.

II. FERMIONIC MODEL

We consider a setup composed of a quantum dot coupled
to a 1D fermionic chain that hosts Z4 parafermionic modes
at its ends, as depicted in Fig. 1. The first challenge is to
devise a system of correlated 1D spinful fermions which can
host such Z4 parafermionic modes. A promising path is to
express parafermionic operators in terms of purely fermionic
ones [14,21] and then write a Kitaev-like model for Z4

parafermions as a strongly-correlated fermionic model in 1D
with local terms only [26]. Such transformation will generate
(nearest neighbor) superconducting and two- and three-body
interaction terms. After collecting these terms, we can write
the following Hamiltonian for the model:

HZ4 = HSC + HW , (1)

with

HSC = −
∑

σ, j

tc†
σ, jcσ, j+1 − i�c†

σ̄ , jc
†
σ, j+1, (2)

HW = −W
∑

σ, j

[c†
σ, jcσ, j+1(−nσ̄ , j − nσ̄ , j+1)

+ c†
σ, jc

†
σ, j+1(nσ̄ , j − nσ̄ , j+1)

+ ic†
σ, jcσ̄ , j+1(nσ̄ , j − nσ, j+1)2

+ ic†
σ, jc

†
σ̄ , j+1(nσ̄ , j − nσ, j+1)2] + H.c., (3)

where t is the (single-particle) hopping parameter, � is an
unconventional superconductivity order parameter (assumed
real) that couples different spins in neighbor sites and W is the
strength of two- and three-body interactions. The many-body
interactions in Eq. (3) have different behaviors and can be
seen as a competition in the system that tries to push the
ground-state away from the half occupation limit.

Let us briefly discuss the four interaction terms in Eq. (3) in
more detail. The first is essentially a hopping term that is hin-
dered when there are no electrons of opposite spins in the two
hopping sites. As such, it can be understood as an effective
two-body attraction between the electrons of opposite spins.
The second term describes a p-wave superconducting pairing
which depends on the two sites having distinct opposite spin
occupation numbers. This, in turn, thwarts the creation of a
p-wave pair of a given spin unless there is a charge imbalance
of electrons with opposite spin in the two sites. The third and
fourth terms are, respectively, three-body spin-orbit-like hop-
ping and spin-mixing p-wave paring terms which contribute

only when two neighboring sites have distinct occupation
numbers of opposite spin.

This model has two important features. In the limit
t = � = W ≡ t , the Hamiltonian maps exactly [26] into a
Kitaev-like chain of Z4 parafermions with two uncoupled
parafermions at its ends, namely,

Hpf = −Je−iπ/4
L−1∑

j=1

ψ jχ
†
j+1 + H.c. (4)

where χ and ψ are Z4 parafermions satisfying χ
†
j = χ3

j ,

ψ
†
j = ψ3

j and χ jχk = iχkχ j , ψ jψk = iψkψ j for j < k and
χ jψk = iψkχ j for j � k. At the same time, the limit t = �

with W = 0 gives a chain with two Majorana modes at each
end (2 × Z2) [26]. As such, we can explore trivial, Z4 and
2 × Z2 phases just by varying � and W .

We consider the case where the chain is coupled to an
interacting quantum dot located at its left end, as depicted in
Fig. 1. The Hamiltonian of the full system is

HZ4−QD = HZ4 + HQD + Hpf−QD, (5)

where

Hpf−QD = −td
∑

σ=↑,↓
c†
σ,d cσ,1 − c†

σ,d c†
σ,1 + H.c., (6)

HQD = Ud n↑,d n↓,d + εd (n↑,d + n↑,d ). (7)

In the above, c†
σ,d (cσ,d ) represents a creation (destruction)

operator for an electron of spin σ in the dot with nσ,d ≡
c†
σ,d cσ,d . Hpf−QD in Eq. (6) represents the dot-chain coupling.

Notice that it includes an Andreev-reflection term [35], sim-
ilarly to the case of quantum dots coupled to chains hosting
MZMs [30,32]. In addition, the quantum dot Hamiltonian is
given by Eq. (7), which contains an electron-electron repul-
sion term with strength by Ud and a (tunable) single-particle
energy level at εd . With no loss of generality, we take td = 0.1t
throughout the paper.

III. PHASE DIAGRAM

The phase diagram of the system can be obtaining by
following the many-body ground state degeneracies as well
as the gap to the first excited states of either the chain-
only or chain+quantum dot systems. We obtain the overall
ground states of the respective Hamiltonians with the DMRG
method [36–38] as implemented within the ITensor pack-
age [39].

Ground-state degeneracy count plays an important role
in distinguishing the two topological phases from the trivial
one: while the ground state is fourfold degenerate in the first
two, it is always nondegenerate in the latter. To this end, we
determine the degeneracy of the ground state by counting
the number of low-lying states within a window δE � 10−6t .
This value is well within the ground-state energy accuracy in
the DMRG calculations given the bond dimension and chain
lengths used (see Appendix A for more details). It is also
enough to characterize gap openings between the ground state
and the first excited state, which, for the parameters used,
are of order ∼10−3t in the trivial phase and �0.1t in the
topological phases.
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FIG. 2. Phase diagrams of HZ4 , Eq. (1). (a) Energy gap between
ground and first excited states for a 20-site chain described by HZ4 .
(b) Quantum dot LDOS ρd (0)/(2π ) for a 20-site chain attached to
the QD for Ud/t = 1 and εd = 0. Symbols represent the � and W
values used in the curves shown in Fig. 3.

In the chain-only case, the topological phases of HZ4 were
obtained by computing the gap between ground and first ex-
cited states of a 20-site chain. These are shown in Fig. 2(a)
for different values of the parameters W and �. Analytical
solutions exist for three out of the four corners of the phase
diagram, namely �/t = W/t = 1, �/t = 1, W = 0 and � =
W = 0. Those limits correspond, respectively, to topological
phases Z4, 2 × Z2 and “trivial”, i.e., a simple tight-binding
chain. As � and W are varied, topological phase transitions
occur as the gap goes to zero. By following these gap closings
and comparing with the analytical limits, we can determine
which region corresponds to each phase.

We stress that many-body interactions play an essential
role in the transition to the Z4 parafermion phase. In fact, as
can be seen in Fig. 2(a), the emergence of Z4 parafermionic
modes occurs only for W/t > 0.4. Concurrently, 2 × Z2 Ma-
jorana phase occurs for weak many-body interaction and a
large values of the superconducting order parameter �.

IV. PARAFERMION DETECTION

Detecting topological phase transitions by monitoring the
gap and ground state degeneracies can be a challenging task.

Not only it is difficult to tell the Z4 and 2 × Z2 topological
phases from each other but also finite-size effects can be an
issue, as discussed in Appendix A. Interestingly, we find that
these phases can be also be probed by accessing the local den-
sity of states of a quantum dot side-coupled to the system. The
dot’s occupation can also be used to differentiate the phases,
making the dot an ideal platform to detect parafermions. To-
gether, these features can give a clearer experimental signature
of the topological phase transitions in the system.

More importantly, our results establish a one-to-one corre-
spondence between the zero-energy density of states and the
different topological and nontopological phases, allowing for
a clear signature of the presence or absence of PZMs in the
chain. This correspondence is nicely illustrated by comparing
Figs. 2(a) and 2(b) and constitute one of the main results of
this work.

A. Local density of states

The LDOS for a given site in the chain can be accessed by
tracking the matrix elements of the local fermionic operators
between the Ngs ground states of the system [26,40]. We
follow this route to obtain the QD LDOS from the zero-energy
spectral function given by

ρd (0) = 2π

Ngs

∑

σ,|g〉,|g′〉
|〈g|c†

σ,d |g′〉|2 + |〈g|cσ,d |g′〉|2, (8)

where we sum over all ground states |g〉,|g′〉 of HZ4−QD

[Eq. (5)]. Notice that ρd (0) depends only on matrix elements
involving the system’s ground states, even for εd 	= 0. In
practice, the sum in Eq. (8) is comprised of Ngs terms which
turn out to be equal. Thus, it is sufficient to calculate only
one of these terms for a given fixed “reference” ground state
|g′〉 ≡ |0〉, which we choose as the first state with the lowest
energy computed by DMRG.

We can compare the phase diagram due the gap to the phase
diagram due to the dot’s zero-energy DOS, Fig. 2(b). The
LDOS phase diagram was obtained for Ud/t = 1, εd = 0 and
ρd (0) assumes a characteristic, near constant, nonzero value
at each of the topological phases while it drops to zero in the
transition to the trivial phase.

The characteristic values of ρd (0) on each topological
phase depend on Ud and εd , as shown in Fig. 3. As a gen-
eral feature, ρd (0) displays peaks at εd = 0 and εd = −Ud ,
as shown in Fig. 3(a) in the topological phases. Generically,
ρd (0) can distinguish the different phases by gate tuning the
quantum dot to the single-occupation regime −Ud < εd < 0.
In fact, tuning the dot to the particle-hole symmetric point
εd = −Ud/2 can maximize its sensibility to distinguish the
different phases. Here, the ρd (0) value at the 2 × Z2 is
nearly twice that of the value at the Z4 phase. Figure 3(b)
shows �ρd (0) = (ρd (0, εd ) − ρd (0,−Ud/2))/ρd (0,−Ud/2)
around the particle-symmetric point. This sharp feature, il-
lustrates that the LDOS variation that can be used to clearly
distinguish the different topological phases: a discontinuity
in the LDOS first derivative with respect to εd appears in
the Z4 phase, while the 2 × Z2 phase is featureless around
εd = −U/2.

The values of ρd (0) at the peaks can be used to differen-
tiate the Z4 and 2 × Z2 phases. While the Z4 phase has a
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FIG. 3. (a) QD LDOS versus εd calculated for Ud/t = 1 and
chain parameters corresponding to the symbols marked in Fig. 2(b):
W/t = �/t = 1 (blue circles, Z4 phase); �/t = 1, W = 0 (red trian-
gles, 2 × Z2 phase); W/t = 0.5, �/t = 0.9, (black diamonds, trivial
phase). The inset shows the LDOS at the first site of the chain for
the same parameters. (b) �ρd (0) near εd = −Ud/2. Note the sharp
feature in the Z4 LDOS curve, which is absent in the 2 × Z2 one. The
Inset shows the LDOS maximum for different values of Ud . Only the
maximum of 2 × Z2 phase has dependency with Ud .

value of ρd (0)/2π ∼ 0.5 at the peaks, the 2 × Z2 phase has
a larger value ρd (0) ∼ 0.58 for Ud/t = 1. These values are a
consequence of the strong localization of the ground state in
both phases (at least half of the total spectral weight) at the
QD site. This situation is similar to the “leaking” of Majorana
bound states into quantum dots studied in Refs. [30,31].

The “leaking” is stronger for the case of MZMs (2 × Z2

phase) than for PZMs (Z4 phase). This is illustrated in the
inset of Fig. 3(a) which shows the LDOS at the first site of the
chain ρ1(0). For the Z4 phase, we find ρ1(0) = π − ρd (0),
reaching ρ1(0) ≈ π and ρd (0) ≈ 0 (localized in the chain
rather than in the dot) for εd = −Ud/2 and εd > 0, εd < −Ud .
This indicates that the PZM “leaks” into the dot only at the
Coulomb peaks εd = 0,−Ud . In the 2 × Z2 phase, by con-
trast, ρ1(0) ∼ 0 for −Ud < εd < 0, implying a much stronger
leaking of the two MZMs into the dot.

We also explored the effects of on-site disorder in the
interacting chain in Appendix B. Our calculations show that as
long as the parafermionic modes are not destroyed, the effect
of disorder amounts essentially to a constant shift in εd (see
Appendix B for details). If such a shift is taken into account,
the all the signatures in the QD properties discussed above are
robust against disorder.

Moreover, the ρd (0) value in the Z4 phase is essentially
independent of the electron-electron interaction in the dot Ud ,

FIG. 4. (a) QD occupancy 〈nd〉 vs εd for the same parameters
as in Fig. 3. Inset: enhancement showing a discontinuity in 〈nd 〉
calculated at the Z4 phase at εd = −U/2. (b) Occupancy difference
between topological and trivial phases.

as shown in the inset of Fig. 3(b) for εd = 0. By contrast,
increasing values of Ud tend to decrease the ρd (0) value at
the 2 × Z2 ρd (0). This indicates that QDs with Ud ∼ t can
be more efficient in distinguishing the different topological
phases.

B. Dot occupation

As discussed above, the stronger signatures of PZMs
in the dot LDOS occur precisely at the points where the
dot’s occupancy changes, either from from unoccupied to
singly occupied (εd ≈ 0) as well as from singly occupied
to doubly occupied (εd ≈ −Ud ). In fact, one can track the
presence/absence of PZMs in the chain by monitoring the
average occupation of the quantum dot [41].

This is shown in Fig. 4(a), where we show the zero-
temperature dot occupancy 〈nd〉 versus εd for each of the
phases at W/t = �/t = 1 (Z4), W/t = 0 �/t = 1 (2 × Z2),
W/t = 0.5 �/t = 0.9 (trivial), shown in the phase diagram.
Although the overall behavior of the occupancy is similar,
with well-defined occupancy plateaus as a function of εd ,
there are subtle differences depending on the phase of the
system.

For instance, while both trivial and 2 × Z2 phase display
a smooth change in occupation number around the symmetric
point εd = −Ud/2, in the Z4 phase the occupancy jumps from
around 0.96 at εd > −U/2 to exactly 1 at −U/2 than to
1.04 at εd < −U/2 [inset of Fig. 4(a)] [42]. This disconti-
nuity arises due to the transfer of spectral weight as the Z4

parafermion “leaves” the dot precisely at εd = −Ud/2, and
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“re-enters” at other value. The same is not true for the 2 × Z2

spectral weight: this state contribution for the dot LDOS is
suppressed but does not reach zero, implying a continuous
occupation number as a function of εd .

In all cases, we confirmed that there is no spin-polarization
in the occupancy (namely 〈nd↑〉 = 〈nd↓〉). In addition, on-site
disorder in the chain does not affect the features in the oc-
cupancy around εd = −Ud/2 for both Z4 and 2 × Z2 phases
(see Appendix B for details).

The distinction between the curves at the different phases
can be better appreciated by subtracting 〈nd〉(εd ) from the
trivial case, �〈nd〉 ≡ 〈nd〉 − 〈nd〉trivial, as plotted in Fig. 4(b).
In particular, �〈nd〉 changes rather strongly near the inflection
points εd = 0,−Ud , allowing one to differentiate the topolog-
ical phases from trivial one and from each other.

V. COMPARISON WITH ANALYTIC RESULTS

In order to better understand in DMRG results, we use an
analytical perturbative approach to describe the changes in the
Z4 topological phase in the presence of the coupling to the
quantum dot.

Our approximation consists of considering the analytic re-
sults for the (fourfold degenerate) ground state |g(0)〉 of Hpf

given by Eq. (4) (which describes the Z4 phase of HZ4 at
� = W = t) and calculate the first-order correction due to
the coupling td to the quantum dot given by Eqs. (6) and (7).
The resulting corrected states |g(1)〉 are then used in Eq. (8) to
obtain an approximation for the dot LDOS ρ̃d (0). Details of
this procedure are given in Appendix C.

One of the artifacts of the approximation is that {|g(1)〉} is
now split into two doublets of Fock parafermion dot sates,
with an energy splitting of order ∼ td/t (see Appendix C).
Nonetheless, by considering the the lowest energy doublet
and calculating the dot LDOS from Eq. (8), one obtains an
excellent agreement with the DMRG calculations, as shown
in Fig. 5.

The LDOS calculated within the analytic approximation
can shed some light on the distinct signatures of the presence
of PZMs, namely the peaks at εd = 0,−Ud . By closely look-
ing at the perturbed ground state doublet we find that both
Fock parafermion states have the same components precisely
for εd = 0,−Ud . This matches what one expects for a PZM

FIG. 5. Comparison between the first-order approximation ap-
proach (lines) and DMRG results (symbols) for the Z4 phase with
Ud/t = 1 (blue), and Ud/t = 5 (green).

localized in the dot: an equal-weight linear combination of
Fock parafermion states.

VI. CONCLUDING REMARKS

In this work, we propose that quantum dots can be useful
tools to probe the presence of parafermionic zero modes in
strongly correlated topological systems. Local measurements
of quantum dot properties such as the local density of states
and the dot’s occupancy can discern trivial from topological
phases and even tell different topological phases apart from
each other.

We illustrate this by considering a model of a quantum dot
coupled to strongly correlated 1D model with a topological
phase displaying Z4 parafermionic edge zero modes. Our
DMRG calculations show that the QD properties can map
the phase diagram of the topological system in a one-to-one
correspondence with the phase diagram obtained by tracking
the ground state degeneracy and the opening and closing of
energy gaps. In fact, using the QD as a probe has a clear
advantage in discerning Z4 and 2 × Z2 phases from each
other, as they share general features in terms of ground state
degeneracy and gap sizes.

The peak height in the QD LDOS as a function of the
QD onsite energy εd can be used to distinguish the two topo-
logical phases from each other and from the trivial one. The
main mechanism leading to the LDOS peaks is the “leaking”
of edge PZMs from the chain to the QD. This leaking is
stronger for the 2 × Z2 phase, which resembles the case of
the QD-Majorana coupled systems [30,31] and allows a clear
distinction of the Z4 phase, which, in turn shows a strong
pinning of the QD LDOS value.

In order to understand better the QD signatures of the Z4

phase, we calculated the first-order correction to the topo-
logical ground state due to the coupling to the QD. These
analytical results nicely match the DMRG numerics and con-
firm the presence of a true parafermionic state localized in the
QD site for εd values corresponding to the peaks in the LDOS.

Moreover, the dot charge occupancy 〈nd〉 as a function
of εd can also be used to differentiate the different topolog-
ical phases in the system. Not only do the two topological
phases have distinct 〈nd〉 vs εd curves from the trivial
one but the Z4 phase shows a discontinuity around εd =
−Ud/2, which does is not present in the trivial and 2 × Z2

phases.
These results indicate that quantum dots can be effectively

used as parafermion detectors. Their ability to distinguish
between the different phases, together with the relatively di-
rect experimental access to the dot’s local properties, bring
interesting prospects in the use of QDs as a tool in the search
of parafermionic zero modes.
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APPENDIX A: FINITE-SIZE EFFECTS
IN THE PHASE DIAGRAM

As discussed in the main text, determining whether two
states are “degenerate” in the topological phases is an im-
portant aspect in constructing the phase diagram show in
Fig. 2. The DMRG calculations were carried out using bond
dimensions up to 100 (a value usually reached in the trivial
phases only) and at least 15 sweeps to ensure convergence.
A “noise term” was also used to improve convergence to the
ground state, avoiding local minima.

Within these parameters, convergence was obtained within
an energy accuracy of ∼10−8t, 10−9t within the topological
phases, which justifies the criteria for considering two states
to be degenerate if their energy difference is less than 10−6t .
The energy gap was calculated with similar accuracy by tar-
geting the first few excited states within the same block (no
symmetries were considered in the calculations).

Although such energy gaps can be used to distinguish the
topological phase transitions between trivial, Z4 and 2 × Z2

phases, some care must be taken regarding the system’s size
used. For small system sizes, the calculated “gap” might have
more to to with the overlapping of the edge modes than with
the actual “topological” gap. This is a similar to the famed
“gap oscillations” in Majorana systems [43].

For instance, for εd = 0, zero-energy states tends to local-
ize at the dot site. This can be easily verified for the Z4 states
where the sum of LDOS is constant: for half of the system
ρ/2π = 0.5, and tends to be localized at the dot. Even though
the sum of LDOS is not constant in the 2 × Z2 phase, this case
also has localization, as we see the decrease of LDOS around
half the chain close to the dot.

To illustrate this point, we consider an uncoupled chain
described by the Hamiltonian in Eq. (1). The dependence of
the gap to chain’s size is shown in Fig. 6. An exponential
decay in the gap, similar to that predicted for Majorana bound
states [43], appear in both topological phases.

The decay rate with system size at each phase is non-
universal and depends on the model’s parameters. In Fig. 6(a)
(Z4 phase), there are clearly two behaviors, with the gap
closing at different rates for � = 0.6 and � � 0.5. Small
deviations from a pure exponential decay are also present,
particularly in the 2 × Z2 phase [Fig. 6(b)]. These are proba-
bly associated with the details on how the 2 × Z2 edge states

FIG. 6. Finite size effects are more prominent in the system with-
out quantum dots. The exponential decay of Egap with the number
of sites of the chain, depends not only on the phase (a) Z4 and
(b) 2 × Z2, but also on the values of � and W .

spread along the chain and overlap with each other. Addition-
ally, some of the “gap closings” are, in fact, the formation of a
doublet, as illustrated in Fig. 6(b) for � = 0.5t and W = 0.3t :
between N = 16 and N = 18, the ground state degeneracy
goes from 1 to 2.

APPENDIX B: ON-SITE DISORDER IN THE CHAIN

In real experimental setups, disorder can play a crucial
role in masking the signatures of topological excitations.
In fact, this has been the case of Majorana zero modes in
semiconducting nanowires, in which strong disorder effects
can produce zero-bias signatures even in the non-topological
phases [44]. Thus, it is interesting to check whether the sig-
natures proposed in the paper would be robust against on-site
disorder in the chain.

In order to account for disorder effects in our system, we
add a local random chemical potential μi at each chain site.
We consider the system to have “weak” disorder if 〈μi〉 ≈ 0.1t
or “strong” disorder if 〈μi〉 ≈ t . After generating the random
profile of μi, we calculate the spectral function, Eq. (8), using
all ground states to avoid any potential bias.

In Figs. 7(a) and 7(c) we show the spectral function for
six different realizations of random potentials, three of them
with weak disorder and three with strong disorder. The only
effect we observe is a shift in the dot’s energy from εd to
ε∗

d = εd + μ∗, where μ∗ is a constant that depends upon the
μi distribution.

The results indicate that the proposed quantum dot mea-
surements are very robust against disorder: the same profile of
Fig. 3(a) is obtained for both weak and strong disorders. The
Z4 and 2 × Z2 phases have the same parameter as Fig. 3(a), as
showed in the main text, these parameters should be enough
to represent all the phases. Moreover, on-site disorder in
the chain does not affect qualitatively the average occupa-
tion number. Similar to the clean sample, Z4 states have a
discontinuity around ε∗

d = 0.5t , while 2 × Z2 states do not
have discontinuity. This shows that both measurements are
disorder-resistant and can be applied in real-life situations to
discern Z4 and 2 × Z2 states.

FIG. 7. Spectral function and average occupation number for
different random potentials. The Z4 phase (a) spectral function and
(b) average occupation number are similar to a clean sample. The
same is true for 2 × Z4 (c) spectral function and (d) average occupa-
tion number.
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APPENDIX C: FIRST-ORDER APPROXIMATION

In this Appendix, we provide an analytical approach to
calculate the first-order correction to the ground state of the
Z4 phase in the presence of the quantum dot.

The starting point is writing the (fourfold degenerate)
ground state |g(0)

j 〉 of Hpf as Z4 Fock-parafermion (FPF) states
{| | j〉p f }, where j is the total FPF number ranging from 0 to
3 [40,45]. Notice that one can always write these FPF number
basis states in terms of (spinful) fermionic operators acting
on a vacuum state |0〉, which corresponds to k =0 FPFs [26].
For instance, for the QD FPF states, we choose |k =1〉d =
c†
↑,d |0〉d , |k =2〉d = ic†

↑,d c†
↓,d |0〉d , |k =3〉d = −ic†

↓,d |0〉d .
Next, we construct a basis for H (0) ≡ Hpf + HQD in the

form |k〉d ⊗ |g(0)
j 〉 where |k〉d are Fock-parafermion states

with FPF number k acting on the QD Hilbert space. This gives
16-state basis given by |k〉d ⊗ |g(0)

j 〉, where k and j are the
total FPF number ranging from 0 to 3 each. To simplify the
notation we call |k〉d ⊗ |g(0)

j 〉 ≡ |k, j〉.
The ground state |g(0)

j 〉 of a L site chain is written as a single

FPF | fa〉 together with a L − 1 site chain |s(L−1)
j−a 〉 with total

FPF number j − a mod 4:

∣∣g(0)
j

〉 = 1

2

( | f0〉 ⊗ ∣∣s(L−1)
j

〉 + | f1〉 ⊗ ∣∣s(L−1)
j−1

〉

+ | f2〉 ⊗ ∣∣s(L−1)
j−2

〉 + | f3〉 ⊗ ∣∣s(L−1)
j−3

〉 )
. (C1)

We also use as a general notation |n + (k − m)〉d =
d† n

d dm
d |k〉d where d (d†) is the annihilation (creation) FPF

operator that lowers (rises) the FPF number by one [46]. If
k − m < 0 or n + k − m > 3, this state should be understood
as zero. For a parafermion chain the condition k − m < 0 or
n + k − m > 3 is not valid, since the ground state with total
FPF number j is a sum of all FPF states at the first site,
Eq. (C1). Instead, we have a filter function ηn = (4 − n)/4
that arises from applying a FPF operator at the first site of the
parafermion chain

〈
g(0)

n+( j−m)

∣∣ d† n
1 dm

1

∣∣g(0)
j

〉 = 4 − max(n, m)

4
. (C2)

Now, we consider fermionic operators in terms of Fock-
parafermions at a given site l:

c↑,l = i
∑

p<l −Np+2n↑,p+2n↓,p

× (
dl − d†

l d2
l − (−1)

∑
p<l Npd†3

l d2
l

)
, (C3)

c↓,l = i
∑

p<l −Np+2n↑,p+2n↓,p

× (−i)
(
(−1)

∑
p<l Npd3

l + d†
l d2

l − d†2
l d3

l

)
, (C4)

where Np is the FPF number operator. Notice the string-
like phases appearing in the fermionic operators, which is
zero for dot operators (l =0). To simplify the notation, the
string-phase resulting from cσ,1 |k, j〉 (which depends on the
dot occupation and the FPF number) is denoted as ϕk with
ϕ0 =1, ϕ1 = i, ϕ2 =−1 and ϕ3 =−i.

The next step is to consider the correction to the coupling
to the quantum dot H (1) ≡ Hpf−QD given by Eqs. (6) by cal-
culating its matrix elements in the FPF basis {|k, j〉}. After

some straightforward algebra, we can derive the Hamiltonian
elements we need, namely,

c†
↑,d c†

↑,1 |k, j〉
= ϕk[η1 |k + 1, j − 1〉 − η2 |k + 1, 1 + ( j − 2)〉

− ϕ2
k η3 |k + 1, 3+ ( j − 2)〉 − η1 |2 + (k − 1), j − 1〉

+ η2 |2 + (k − 1), 1 + ( j − 2)〉 + ϕ2
k η3 | 2 + (k − 1), 3

+ ( j − 2)〉 − η1 |2 + (k − 3), j − 1〉
+ η2 | 2 + (k − 3), 1 + ( j − 2)〉
+ ϕ2

k η3 |2 + (k − 3), 3 + ( j − 2)〉], (C5)

c†
↓,d c↓,1 |k, j〉

= ϕk[ϕ2
k η3 |k + 3, j − 3〉 + η2 |k + 3, 1 + ( j − 2)〉

− η3 |k + 3, 2 + ( j − 3)〉 + ϕ2
k η3 |2 + (k − 1), j − 3〉

+ η2 |2 + (k − 1), 1 + ( j − 2)〉 − η3 | 2 + (k − 1), 2

+ ( j − 3)〉 − ϕ2
k η3 |3 + (k − 2), j − 3〉

− η2 | 3 + (k − 2), 1 + ( j − 2)〉
+ η3|3 + (k − 2), 2 + ( j − 3)〉], (C6)

c†
↑,d c†

↑,1 |k, j〉
= ϕ3

k [η1 |k + 1, j + 1〉− η2 |k + 1, 2 + ( j − 1)〉
− ϕ2

k η3 |k+ 1, 2+ ( j − 3)〉 − η1 |2+ (k − 1), j + 1〉
+ η2 |2 + (k − 1), 2 + ( j − 1)〉 + ϕ2

k η3 | 2 + (k − 1), 2

+ ( j − 3)〉 − η1 |2 + (k − 3), j + 1〉
+ η2 | 2 + (k − 3), 2 + ( j − 1)〉
+ ϕ2

k η3 |2 + (k − 3), 2 + ( j − 3)〉], (C7)

c†
↓,d c†

↓,1 |k, j〉
= ϕ3

k [ϕ2
k η3 |k + 3, j + 3〉 + η2 |k + 3, 2 + ( j − 1)〉

− η3 |k + 3, 3 + ( j − 2)〉 + ϕ2
k η3 |2 + (k − 1), j + 3〉

+ η2 |2 + (k − 1), 2 + ( j − 1)〉 − η3 | 2 + (k − 1), 3

+ ( j − 2)〉 − ϕ2
k η3 |3 + (k − 2), j + 3〉

− η2 | 3 + (k − 2), 2 + ( j − 1)〉
+ η3 |3 + (k − 2), 3 + ( j − 2)〉]. (C8)

We can also derive the diagonal terms in H (0) involving dot
operators, which we write schematically as

(n↑,d + n↓,d ) |k, j〉 = |1 + (k − 1), j〉 + |2 + (k − 2), j〉
− |3 + (k − 3), j〉 , (C9)

n↑,d n↓,d |k, j〉 = |2+ (k− 2), j〉− |3+ (k − 3), j〉 . (C10)
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FIG. 8. Calculated ground state components Ak ≡∑
j |〈k, j|g(1)〉|2 for each state of the lowest energy doublet in

|g(1)〉 at the dot site. The crossings at εd = −Ud , 0 mark the points
where the ground state has equal weights of two FPF states,
indicating PZMs localized in the dot. At the symmetric point,
εd = −Ud/2, the ground state doublet changes, resulting in a
discontinuity in Ak .

The corrected ground state {|g(1)〉} are the eigenvectors
associated with the four-lowest eigenvalues of H (0) + H (1) in
the {|k, j〉} FPF basis. These |g(1)〉 states are divided in two

doublets, with energy splitting less than td/t . Each doublet
are composed of two dot FPF states (either |0〉d , c†

d↑ |0〉d or

ic†
d↑c†

d↓ |0〉d ,−ic†
↓ |0〉d ) together with a sum of all states in

the chain.
The resulting corrected states are then used in Eq. (8) to

obtain an approximation for the dot LDOS ρ̃d (0), where we
sum over the doublets with lowest energy. In general, this
means we sum over only one doublet. Nonetheless, as shown
in Fig. 5, the total LDOS obtained by the approximation nicely
matches the one calculated from DMRG. This is valid even
when the dot’s interaction is large, showing the approxima-
tion’s stability. The main artifact of the approximation is that,
due to the doublet splitting, it yields a spin-polarized LDOS,
while DMRG gives the correct unpolarized LDOS.

The origin of the artifact is illustrated in Fig. 8, which
shows the components Ak ≡ ∑

j |〈k, j|g(1)〉|2 of each state
inside the ground state doublet as a function of εd . For εd <

−Ud/2 the doublet with nonzero spectral weights is spin
down polarized while for εd > Ud/2 the spin up polarization
prevails.

Interestingly, Fig. 8 shows that the components of states
inside the doublet are equal precisely at εd = 0 and εd =
−Ud . At these points, the state in the dot corresponds to a
parafermionic mode fully localized at the quantum dot. Mov-
ing away from those points, the parafermion becomes split
between dot and chain, that translates into an imbalance of
spectral weights.
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