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Edge Z3 parafermions in fermionic lattices
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Parafermion modes are non-Abelian anyons which were introduced as ZN generalizations of Z2 Majorana
states. In particular, Z3 parafermions can be used to produce Fibonacci anyons, laying a path towards uni-
versal topological quantum computation. Due to their fractional nature, much of the theoretical work on Z3

parafermions has relied on bosonization methods or parafermionic quasiparticles. In this paper, we introduce a
representation of Z3 parafermions in terms of purely fermionic models. We establish the equivalency of a family
of lattice fermionic models written in the basis of the t − J model with a Kitaev-like chain supporting free Z3

parafermionic modes at its ends. By using density matrix renormalization group calculations, we are able to
characterize the topological phase transition and study the effect of local operators (doping and magnetic fields)
on the spatial localization of the parafermionic modes and their stability. Moreover, we discuss the necessary
ingredients towards realizing Z3 parafermions in strongly interacting electronic systems.
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I. INTRODUCTION

Quasiparticle excitations with non-Abelian exchange
statistics have long been proposed as the building blocks
of topological quantum computers [1]. Currently, the most
promising candidates to this role are Majorana bound states
(MBSs) [2,3], with several proposals for their experimental
realization being pursued [4,5]. The basic mechanism is to
use “braiding operations” of isolated MBSs to encode and
process information in “qbits” in a particular system. Such
information is naturally protected by the non-Abelian nature
of the braiding operations, which amounts to a “topological
protection.”

A major limitation is that not all unitary operations (“quan-
tum gates”) needed for a fully functional quantum computer
can be emulated by MBS braiding. As such, some of the
operations would not be topologically protected (and thus
more susceptible to noise and decoherence effects), hinder-
ing the prospect of an all-Majorana-based universal quantum
computer [1,6,7]. A possible solution to this problem is to use
parafermionic bound states, which are natural generalizations
of MBSs and could in principle be used as the building blocks
of a universal topological quantum computer [8–10].

The concept of parafermions was introduced by Fradkin
and Kadanoff in the context of clock models in the early
1980′s [11]. Parafermionic operators obey fractional statis-
tics and also play an important role in critical behavior
of clock models and ZN -symmetric models [12]. Although
parafermions were introduced in the context of statistical
mechanics, they also arise as quasiparticle excitations in
strong-correlated condensed matter [13–17].

In 1999, Read and Rezayi showed that the excitations of
some fractional quantum Hall states can be described us-
ing parafermions [18]. Parafermions in ZN models can have
zero-energy edge states which are readily seen as a generaliza-
tion of Majorana zero modes [12,19]. Although a topological

computer made only by parafermions is not universal [20],
Z3 parafermions can be used to produce “Fibonacci anyons”
in two dimensions [8,21], leading to the interesting prospect
of universal topological quantum computation using non-
Abelian anyons [22].

Over the years, several models that host isolated
parafermionic modes in condensed matter systems have been
considered. Proposals range from interacting quantum wires
[23,24] to Abelian quantum Hall/superconductor hybrids
and strongly interacting two-dimensional topological insu-
lator edges coupled to superconductors [22,25]. Moreover,
several recent works focus on the capability of a given
system to host zero-mode parafermions through low-energy
models [13,17,26] and parafermion-only based Hamiltonians
[27–30]. While the usual Z2 MBSs and, more recently, Z4

parafermionic zero modes [31] emerge as quasiparticle exci-
tations in purely fermionic models (and thus can be detected
by their “leakage” to side-coupled electronic quantum dots
[32–34]), the picture for Z3 parafermionic modes is not quite
clear. In fact, the question of whether purely fermionic models
can produce (odd-N) ZN parafermionic edge modes is still an
open one.

In this paper, we address this fundamental question and
propose a fermionic Hamiltonian that hosts Z3 parafermions.
Our proposal is based on strong local electron-electron inter-
actions such that fermionic double occupancy is suppressed.
In a sense, the restriction to zero and singly occupied states
plays a similar role as the restriction to “spinless” fermions in
the early proposals for Majorana bound states in semiconduc-
tor nanowires [2,35–37].

In order to characterize the parafermionic phase, we use
the density matrix renormalization group (DMRG) [38–40]
to numerically calculate the energy gap, the entanglement
entropy (EE), and the local spectral functions of the strongly
correlated fermionic models. In addition, we study the sta-
bility of Z3 parafermions under the effect of local doping
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and Zeeman terms, which can be important for the prospects
of parafermion-based topological quantum computation. We
find that the parafermionic zero modes are stable against such
local perturbations, as long as these terms preserve the Z3

symmetry.
The text is organized as follows. In Sec. II, we intro-

duce a strongly correlated fermionic model displaying Z3

parafermionic zero modes. By using a mean-field argument,
we derive an effective model which maps exactly into a
Kitaev-like Z3 parafermion chain. Moreover, in Sec. III we
show that the derived Hamiltonians indeed display a Z3 phase
and can be deformed into each other without closing the gap.
The effect of local operators is studied in Sec. IV, where we
show the existence of a topological phase transition between
a topological phase with edge parafermionic modes and a
nontopological normal state. We also discuss the dependence
of edge modes and their robustness under effects of local oper-
ators. To this end, we introduce a Fock-parafermion spectral
function (FPF-SF) that can be used to distinguish the edge
states. Finally, we present our concluding remarks in Sec. V.

II. MODELS AND METHODS

In this section, we propose a spinful fermionic model
supporting Z3 parafermionic edge modes. As previously dis-
cussed, the intrinsic difficulty in devising such a system is that
the Hamiltonian must conserve parity symmetry (Z2) and, at
the same time, conserve a Z3 symmetry of the parafermionic
modes, two mutually exclusive requirements. A possible solu-
tion is that the Z3 parafermionic modes emerge in a situation
in which the parity of the different ground states is set by the
number of sites in the chain. As we shall see, this is indeed the
case in the proposed fermionic lattice models.

We begin by considering a fermionic spinful model with
infinitely large on-site Hubbard repulsive interactions. In this
limit, we can safely exclude the doubly occupied state in the
local Hilbert space of each site, a procedure akin to that used
in the derivation of the t − J model [41]. The Hamiltonian
reads

HI = H (2) + H (4) + H (6), (1)

where

H (2) =
L−1∑

j=1
σ=↑,↓

−tc†
σ, jcσ, j+1 − �c†

σ, jc
†
−σ, j+1 + H.c., (2)

H (4) = −W4

L−1∑

j=1

s+
j s−

j+1 + H.c., (3)

H (6) = −W6

L−1∑

j=2

s+
j−1s+

j s+
j+1 + H.c. (4)

In the above, s+
j (s−

j ) = c†
↑, jc↓, j (c

†
↓, jc↑, j ) is the spin-flip

operator, t is the single-particle hopping, � is a p-wave-like
superconducting order parameter that mixes spins in neighbor
sites, W4 is the strength of a synchronized spin flip in two
neighbor sites, while W6 is the strength of synchronized spin
flip in the three closest sites. We note that the three-body

interaction contained in H (6) is an important ingredient for the
existence of Z3 parafermions.

The Hamiltonian HI given by Eq. (1) has S3 = Z3 � Z2

symmetry, where the Z2 part comes from spin flip and the Z3

component stems from the generalized three-valued “parity”
operator:

P̂Z3 = ω
∑L

j=1(n↑, j+2n↓, j ) (5)

where ω = e2π i/3 and nσ, j = c†
σ, jcσ, j is the usual fermionic

number operator at site j.
One can readily check that P̂†

Z3
HIP̂Z3 = HI. More impor-

tantly, as further discussed in Secs. III and IV, the ground
states of HI are also eigenstates of P̂Z3 and, in the Z3 phase,
two out of the three ground states are related by a spin-flip
transformation. These states can be split by an out-of-plane
local Zeeman term which breaks the corresponding Z2 sym-
metry.

The next step is to check under which conditions HI

can be related to a benchmark Hamiltonian supporting Z3

parafermionic edge modes. To this end, we can use a Kitaev-
like parafermion chain [12,42], the Hamiltonian of which is
given by

HPF = −J
L−1∑

j=1

ψ jχ
†
j+1 + H.c., (6)

where each site has two parafermion modes ψ and χ satisfy-
ing parafermionic identities ψ

†
j = ψ2

j , χ
†
j = χ2

j , and χ jψ j =
ωψ jχ j . For different sites, they satisfy a parafermionic ex-
change algebra ψlψ j = ωψ jψl , χlχ j = ωχ jχl and χlψ j =
ωψ jχl for l < j.

This model is exactly solvable for any J > 0, showing a
threefold (Z3 symmetric) degenerate ground state [12,42,43].
Moreover, one can show that HPF can be written in terms
of fermionic operators (see Appendix A) yielding a similar
Hamiltonian as that of Eq. (1).

We note that fermionization of HPF produces a parity-
violating interaction term H (3) given by

H (3) = −W3

L−1∑

j=1
σ=↑,↓

(−1)
∑

p< j np[cσ, jc
†
−σ, j+1cσ, j+1+

+ c†
σ, jc−σ, jc

†
σ, j+1] + H.c. (7)

This term corresponds to an exotic process of creation
(annihilation) of an electron together with a spin flip in the
neighboring site. As such, it does not conserve either parity
or electron number. In fact, this term can be understood as an
approximation of the mean-field interaction of the term H (6)

given by Eq. (4) in which the parity is spontaneously broken
(see Appendix B).

We thus define Hamiltonian HII as

HII = H (2) + H (4) + H (3). (8)

For J := t = � = W4 = W3, it can be shown that HII →
HPF (see Appendix A for details). In this special limit, the
ground state can be obtained analytically [43].

We should point out that the long-range interaction terms in
HII do not prevent the existence of a topological phase [44,45].
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In the present case, not only are there free parafermionic
edge operators (χ1 and ψL) which couple the different ground
states but also the ground states are indistinguishable by local
probes, satisfying the criteria for topological order [30].

Although HII can be obtained from a mean-field-like form
of HI, it is not a priori clear that HI should have a Z3 topo-
logical phase. The deep connection of the fermionic model of
Eq. (1) and the parafermionic chain of Eq. (6) constitutes one
of the main results of this paper and it is discussed in detail in
Sec. III.

III. EQUIVALENCE OF THE MODELS

The existence of a Z3 phase in the Hamiltonian HI can be
established by two complementary methods. First, we show
that there is a phase transition in which the ground state of
the system goes from nondegenerate to threefold degenerate.
Then we show that in this threefold degenerate phase it is pos-
sible to smoothly deform HI into HII in a regime of parameters
in which it displays the same Z3 parafermion phase as HPF.

These two methods, together with the existence of gapless
edge states and the indistinguishability of ground states by
local operators (discussed in Sec. IV C) and the protection
against disorder and single impurities that preserve Z3 sym-
metry (Sec. IV), are strong evidences of the existence of a Z3

topological phase in both HI and HII.

A. Gap closing at the transition

The different phases can be characterized by two main
quantities: the ground-state degeneracy nGS and the energy
gap Egap between the ground state and the first excited (many-
body) state. To this end, the ground states of the fermionic
Hamiltonians are calculated for the different model param-
eters with the DMRG method [38,39,46] via the ITENSOR

package [40]. In the remainder of the paper, we use t = � =
W4 and a 100-site chain, unless otherwise specified.

We obtain nGS in the DMRG calculations by counting the
number of low-lying states within a window δE � 10−3t of
the ground-state energy (the hopping t is the energy unit). This
value is well within the ground-state energy accuracy in the
DMRG calculations given the bond dimension and system’s
size. It is also enough to calculate Egap: for the parameters
used, Egap � 10−2t for all cases.

Results for Egap for Hamiltonians HI and HII as a function
of W6 and W3, respectively, are shown in Fig. 1. Figure 1(a)
shows Egap for HI as a function of W6. For small values of
W6, the system is in the trivial regime and has a small gap
(≈10−2t) which we attribute to finite-size effects. For W6 ≈ 2t
[47], the system undergoes a phase transition, characterized
by a sharp decrease in Egap (“gap closing”).

The phase transition becomes evident by plotting the low-
lying energy levels as a function of W6 [inset Fig. 1(a)]. For
W6 � 2t , the single ground state and a pair of higher-energy
states merge, abruptly increasing the degeneracy from nGS =
1 to 3. The other higher-energy states also close the gap at the
same point and reopen, indicating the bulk gap closes at the
transition.

The threefold ground-state degeneracy characterizes the
new phase as a Z3 (topological) phase. The closure of the gap

FIG. 1. Gap (black) and entanglement entropy (red) as a function
of interaction strength (a) W6 and (b) W3 for the models described by
HI and HII, respectively. While the phase transition occurs at W6 > 2t
in HI, any W3 > 0 induces the Z3 phase in HII. The inset in panel
(a) shows the difference in energy level between the five states with
lower energy (E ) and the ground-state energy EGS. Note that all the
states converge around the phase transition.

shown in Fig. 1(a) is accompanied by a discontinuity in the
first derivative of the EE [48].

At the Z3 phase, all ground states have a well-defined Z2

parity which depends on the length L of the chain as P̂Z2 =
(−1)

∑L
i (n↑,i+n↓,i ) = (−1)L mod2. Moreover, these ground states

are characterized by a Z3 parity operator P̂Z3 = ω
∑L

i (n↑,i+2n↓,i )

defined in Eq. (5). The different ground states can be distin-
guished by the respective eigenvalue of P̂Z3 , which can be
1, ω, or ω2. For this reason, the Z3 phase cannot be understood
as a simple combination of a Majorana-hosting phase together
with a Z2 broken symmetry phase as it is the case for Z4

parafermions [29,31,34]. An important consequence is that a
spin-flip transformation swaps the sectors 〈P̂Z3〉 = ω and ω2,
while 〈P̂Z3〉 = 1 is mapped into itself. This translates into the
formation of doublets in the excited states.

A similar analysis can be made for HII, by plotting Egap for
increasing W3 with t = � = W4 [Fig. 1(b)]. The main differ-
ence is that the critical value in which the system goes from
the trivial to Z3 phase is W3 = 0. As such, for any W3 > 0
the system is in the Z3 phase and no phase transition takes
place for nonzero values of W3, as indicated by the absence of
a peak in the entanglement entropy. In fact, the EE reaches its
minimum value [log(3)] for W3 = t , precisely the point where
the mapping of HII to the parafermion chain Hamiltonian HPF

is exact.

B. Entanglement spectrum and finite-size effects

In order to better understand the nature of the ground state,
we turn to the entanglement spectrum of HI. Figure 2(a) shows
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FIG. 2. Characterization of HI with W6 = 3.2t . (a) Entanglement
spectrum for the ground state in the sector 〈P̂Z3 〉 = 1 for a chain with
L = 100 sites; the spectrum has a threefold degeneracy and is the
same for other sectors. (b) Gap between the ground states due to the
finite size of a chain with L sites; note that there are two different
behaviors for L � 60 and L � 70 indicating two mechanisms of
intraedge interaction.

the largest eigenvalues of the reduced density matrix (λn >

5 × 10−6) calculated with DMRG in the sector 〈P̂Z3〉 = 1
for W6 = 3.2t and L = 100 sites. As a general feature, the
spectrum is threefold degenerate, as it would be expected for a
Z3 phase [28]. The same result is obtained for the other parity
sectors.

We point out in passing that a similar result is obtained for
HII. In particular, at the point W3 = t , the system is maximally
entangled with bond dimension 3, i.e., only three nonzero λn,
all equal to 1/3.

Due to intraedge coupling of the edge states, the gap
calculation of HI is prone to finite-size effects, as shown in
Fig. 2(b). We note that there are two distinct regimes, with
the gap decaying faster for L � 70 sites. This indicates that
the decay for L � 60 is mainly due to a decreasing in the
intraedge overlap of the edge modes, which is also consistent
with the spectral function results discussed in Sec. IV C.

This is in striking contrast with the case of HII, where the
edge modes are much more localized. In fact, since HII is
exactly mapped in HPF, there is no dependence of the gap
size with the chain length. This is clearly not the case for HI,
which needs large chains such that finite-size effects can be
neglected.

C. Deforming HI into HII

In order to confirm that the limits of large W6 for HI and
large W3 for HII correspond to the same topological Z3 phase,
we consider the following Hamiltonian:

H ′(x) = (1 − x)HI + xHII, (9)

FIG. 3. Gap (black) and entanglement entropy (red) as a function
of deformation parameter x, Eq. (9). We consider the case W6 = 3.2t
and W3 = t .

which is equal to HI and HII for x = 0 and 1, respectively. In
a sense, x acts as a parameter which continuously “deforms”
H (6) into H (3).

Figure 3 shows the dependency of Egap and entanglement
entropy with x for W6 = 3.2t and W3 = t . The crucial result
is that there is no gap closing or sharp features in the en-
tanglement entropy (which would be indicative of a phase
transition) as x varies from 0 to 1. In fact, the minimum
gap is Egap ≈ t for x = 0.1 and the difference in the en-
tanglement entropy’s value is due to the differences in the
ground-state occupancies. This shows that both Hamiltonians
describe the same Z3 topological phase for these values of W6

and W3.

IV. EFFECTS OF LOCAL OPERATORS

Although both HI and HII display a parafermion-hosting
Z3 phase, the ground states themselves are very different.
For example, the HI ground state has a well-defined parity,
while the HII ground state does not. Nonetheless, we expect
the general behavior of parafermions under changes in local
operators to be similar.

Since the DMRG calculations for HII run a few orders of
magnitude faster as compared to HI, we will use HII as a
“benchmark” in this section. Unless otherwise stated, we set
W3 = t (and W6 = 0), meaning that, in the absence of other
terms in the Hamiltonian, the system will be in the topological
phase of HII.

Previous studies [12,42] have shown that local interactions
might be able to destroy the parafermion phase. Specifi-
cally, the interaction − f (eiθψ

†
j χ j + e−iθχ

†
j ψ j ) destroys the

parafermion edge while conserving the FPF number. In par-
ticular, there is a phase transition at f = J with θ = 0.
This interaction translates into the fermionic language (see
Appendix A) as

eiθψ
†
i χi + e−iθχ

†
i ψi = −2

√
3 sin(θ ) n↑,i

+ [3cos(θ ) −
√

3 sin(θ )]n↓,i, (10)

which can be thought of as a mixing of magnetic field and
chemical potential for any θ . This shows the importance of lo-
cal operators to parafermions. In particular, we are interested
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FIG. 4. Dependence of the gap with respect to local operators.
(a) Doping (μ), (b) z-direction (Vz), (c) x-direction (Vx), and (d)
y-direction (Vy) Zeeman terms. Panels (a) and (b) show a topological
phase transition at μ = 3t and Vz = 2.3t , respectively. Panel (c) has
a phase transition between a twofold degenerate state and a normal
state for Vx ≈ 2.5J . Finite-size effects are responsible for the discon-
tinuity in the gap. Panel (d) shows no phase transition as a function
of Vy, and the gap always increases. The inset in panel (a) shows the
exponential dependence of the gap between the parafermionic modes
with the chain length for μ = 2.5t (black circles) and μ = 2.9t (red
squares).

in the effects of chemical potential,

Hd = −
L∑

j=1
σ=↑,↓

μnσ, j, (11)

and Zeeman fields in all three directions:

Hx =
L∑

j=1
σ=↑,↓

Vxc†
σ, jc−σ, j, (12)

Hy =
L∑

j=1
σ=↑,↓

−iVyσc†
σ, jc−σ, j, (13)

Hz =
L∑

j=1
σ=↑,↓

Vzσnσ, j, (14)

which will be added to HII.

A. Gap closing

Figure 4 shows the dependence of the gap energy Egap with
each of these local terms for a 100-site chain. Regarding the
chemical potential (μ), we see a near gap closing at μ ≈ 2.9t
[Fig. 4(a)]. This is consistent with previous results [42] which

show a transition between topological (parafermionic) and
normal phases for μ = 3t . We believe the small discrepancy
with our result can be accounted for by finite-size effects. In
fact, we can verify that the phase transition point approaches
μ = 3t for increasing the chain sizes (see Sec. IV C).

The inset of Fig. 4(a) shows that the gap between the
parafermion states decreases exponentially in the topolog-
ical phase. This gap arises due to the coupling between
parafermionic modes located at both ends of the chain. This
exponential decay depends on μ [49], as illustrated by the
slower decay with size by μ = 2.9t as compared to the case
μ = 2.5t . As such, this is equivalent to the “exponential pro-
tection” predicted for Majorana modes [50] and was also
predicted to occur for Z4 parafermions as well [31].

Parafermionic edge modes are also stable under a small
local Zeeman-like term in the z direction proportional to Vz, as
given by Eq. (14). As shown in Fig. 4(b), the topological phase
is destroyed only for relatively large values of the Zeeman
term (Vz � 2.3t). In addition, similarly to the dependency with
the doping μ, the transition value is sensitive to finite-size ef-
fects even for long chains. In both cases (μ and Vz), the ground
state goes from a threefold degenerate to a nondegenerate one
at the transition.

As discussed in detail in Appendix A, a generic magnetic
field in the xy plane does not conserve the Fock-parafermion
number, thus breaking the Z3 symmetry. In fact, any small
positive Zeeman term in the x direction (Vx > 0) breaks the
ground-state Z3 symmetry, changing the ground-state degen-
eracy from nGS = 3 to 2. As Vx increases, a second phase
transition occurs, further reducing nGS from 2 to 1. This is
shown in Fig. 4(c), where the phase transition to the nGS = 1
(nondegenerate) ground state occurs around Vx ≈ 2.5t . In this
case, finite-size effects are more prominent than the previous
cases, making it difficult to pinpoint the exact Vx value where
phase transition occurs for large systems.

By contrast, any positive Zeeman term in the y direction
(Vy > 0) produces a phase transition directly from nGS = 3
to 1. The gap increases monotonically with Vy, as shown in
Fig. 4(d). Due to these differences between x and y directions,
we expect a strong dependence of the gap with the direction
of magnetic fields in the xy plane.

In order to better understand how the local Zeeman terms
in the xy plane affect the parafermionic chain ground state, we
consider a generic Zeeman term arising from a magnetic field
in the xy plane, given by

Hxy = Vxy

L∑

j=1

e−iθ c†
↑, jc↓, j + eiθ c†

↓, jc↑, j, (15)

where Vxy =
√

V 2
x + V 2

y is the strength of the Zeeman field
and θ is the magnetic field angle with respect to the x direc-
tion.

We calculate the gap energy (Egap) and ground-state degen-
eracy (nGS) as a function of Vxy and θ . The results are depicted
in Fig. 5. Notice the clear symmetry in Egap(θ ) and nGS(θ )
as θ → θ + 2π/3. This is in fact due to the invariance of
Hxy under a 2π/3 rotation, associated with the Z3 symmetry
of the full Hamiltonian. This invariance becomes clear by
writing Eq. (15) in terms of parafermion operators, which
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FIG. 5. Dependence of (a) the gap to the intensity and angle of
the magnetic field and (b) its ground-state degeneracy, ngs. For fixed
Vxy < 2.5t the gap is minimum at angles 0, ±2π/3 and the ground
state is twofold degenerate. The dotted circles in panel (a) correspond
to the transversal cut shown in Fig. 6.

can be accomplished by inverting the fermionization process
discussed in Appendix A. The result is

Hxy = Vxy

3

L∑

j=1

ω
∑

p< j Npe−iθ [χ j + ωψ j + χ
†
j ψ

†
j ]

+ ω2
∑

p< j Npeiθ [χ†
j + ω2ψ

†
j + ω2χ jψ j]. (16)

For θ = 0 and ±2π/3, the Hamiltonian is invariant under
a transformation χ → eiθχ and ψ → eiθψ . This can be eas-
ily seen in Fig. 5, where the smallest gaps occur at angles
θmin

n = 2nπ/3, n = 1, 2, 3. In those cases, the ground state is
doubly degenerate, as discussed above, with a phase transition
occurring at Vxy ≈ 2.5t , similar to that shown in Fig. 4(c).

In order to better visualize this, a crosscut of Fig. 5 with
Vxy = 1.5t and 2.4t is shown in Fig. 6. The minimum gap
occurs at θmin

n = 2nπ/3 and the maxima are at θmax
n = (2n −

1)π/3 with n = 1, 2, 3.

B. Local disorder

We also considered the case of a locally disordered poten-
tial, i.e., the on-site terms μ or Vz are randomly distributed.
We simulated 20 different profiles of chemical potential or

FIG. 6. Transversal cut of Fig. 5 with Vxy = 1.5t , solid black, and
Vxy = 2.4t , dashed red.

Zeeman in the z direction; both μ j and Vz, j were generated
from a uniform distribution and varying the mean values of
μ/t or Vz/t .

Figure 7 shows the variation of the mean disorder-induced
splitting 〈�E0〉 between the ground states as a function of
the mean values of μ or Vz. The splitting is zero (i.e., the
parafermionic phase is not destroyed) provided that the mean
values are much smaller than the critical values for which
the system undergoes a phase transition, shown in Fig. 4.
By contrast, for disordered chains with mean values of 〈μ〉/t
or 〈Vz〉/t close to critical values, even a handful of sites are
enough to open a gap and lift the ground-state degeneracy.

Nonetheless, a single impurity symmetry in the bulk does
not lift the threefold degeneracy as long as it preserves the
Z3 symmetry. This property holds even when the impurity
potential is large, 〈μ〉 ≈ 100t and 〈Vz〉 ≈ 100t , which is cen-
tral to the topological protection. On the other hand, a single
impurity that breaks Z3 symmetry, no matter how weak, is
enough to lift the threefold degeneracy.

C. Fock-parafermion spectral function

We now turn to the spatial distribution of the parafermionic
modes along the chain. To this end, we calculate the

FIG. 7. Mean energy splitting between the ground states due to
random potential with maximum intensity for the chemical potential
μ (solid black) and Zeeman field at z direction Vz (dashed red). The
mean was calculated based on 20 different distributions of impurities.
Note the splitting happens for values of 〈μ〉/t or 〈Vz〉/t of the order
of the critical value seen in Fig. 4.
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FIG. 8. FPF spectral function A j (0) for different interactions.
(a) Spatial spread of the ground state over the chain for HI with
W6 = 2.2t (solid black) and W6 = 3.2t (dashed red). (b, c) Spatial
spread of the ground state of HII for W3 = t and (b) μ = 0.1t (solid
black), μ = 2.5t (dashed red), and μ = 2.8t (dot-dashed blue) and
(c) for Vz = 0.1t (solid black), Vz = 2.1t (dashed red), and Vz = 2.2t
(dot-dashed blue). The green dots mark the analytical value (2/9) for
perfectly localized Z3 edge parafermions of HPF.

zero-energy Fock parafermion spectral function at site j de-
fined as

A j (0) = 2π

nGS

∑

|g′〉|g〉
| 〈g′| d jω̄

Nj |g〉 |2 + | 〈g′| ω̄Nj d†
j |g〉 |2,

(17)

where d is the Fock-parafermion operator defined in Eq. (A4)
in Appendix A, Nj = n↑, j + 2n↓, j is the Fock-parafermion
number operator, and the second sum (normalized by the
ground-state degeneracy nGS) runs over all ground states
|g〉 , |g′〉. As discussed in Appendix D, the phase factor ω̄Nj

prevents spurious asymmetries in the FPF spectral weights
along the chain [43]. Interestingly, the phase factor ω̄Nj does
not affect the FPF spectral function of HI, Fig. 8(a). This
implies that the structure of the ground states of HI is sig-
nificantly different from that of the ground states of HII, as
discussed below.

For a parafermion chain with no local interactions
[Eq. (6)], the zero-energy FPF spectral function is
A j (0)/(2π ) = 2/9(δ j,1 + δ j,L ), which is perfectly consistent
with our simulations. In Appendix D, we show the derivation
for the analytic values of A j (0), a generic ZM parafermion.

We emphasize that A j (0) measures the local density of
states related to Fock parafermions instead of the electrons,
although the actual calculations involve fermionic matrix
elements. A more naïve approach would be to calculate
the purely fermionic spectral function, as it has been done
in the Z4 case [31,34]. However, the matrix elements entering
the usual fermionic spectral function couple states with oppo-
site fermionic parities and produce ill-defined results for these
models. For HI, all ground states have the same parity, such
that 〈g′| cσ |g〉 = 0, while for HII the ground states simply do

not have a well-defined parity. In addition, the terms arising
from bulk states do not necessarily cancel each other, which
is a useful property here (see Appendix D). For these reasons,
A j (0) as defined above is a better option to visualize the edge
parafermionic modes.

The FPF spectral function for HI [Fig. 8(a)] shows ex-
ponentially localized edge states in the topological phase
(W6 � 2t). These modes decay exponentially into the interior
of the chain but in a nonmonotonic fashion, with an oscillation
period of a few sites.

This is in sharp contrast with the strongly localized edge
states of HII for W3 = t shown in Figs. 8(b) and 8(c). For small
values of on-site potentials (μ and Vz, black curves), the decay
occurs within a few (approximately ten) sites. For μ = Vz = 0
and W3 = t , HII maps exactly into HPF and the parafermionic
modes become free, with the FPF spectral function being zero
in all sites of the chain except at the end sites, where it reaches
the analytically obtained value of 2/9 (green dots in Fig. 8).

These differences between HI and HII are also encoded
in the structure of the ground states in the FPF basis. For
instance, while two ground states (|g〉 and |g′〉) of HII with
distinct Z3 parity values can be coupled by any local FPF
creation/destruction operator such that 〈g|dj + d†

j |g′〉 
= 0,
the same is not true for the ground states of HI. Although
the latter have well-defined Z3 parity values, they are not
eigenstates of all local FPF number operators nd, j = d†

j d j .
Figure 8(b) shows the spreading of the parafermionic state

as we increase the doping across the phase transition at μ ≈
2.9. The plot of A j (0) shows exponentially localized modes in
the topological phase [μ = 0.5t (black) and μ = 2.5t (dashed
red)], while the ground state becomes delocalized near the
transition point [μ = 2.8t (dashed blue)]. Moreover, it be-
comes clear that finite-size effects can be considerable in
small chains (<100-site long chains).

The same analysis can be done in the case of a magnetic
field in the z direction [Fig. 8(b)] for μ = 0.1t . Again, the
spectral function shows exponentially localized edge modes
for Vz < V c

z = 2.2t , i.e., before the phase transition at V c
z =

2.2t (dashed blue curve), at which point the ground-state
spectral function is spread all over the chain.

D. Entanglement entropy

Lastly, we consider the signatures of the topological phase
transition in the EE [42,51]. Figure 9 shows the EE calculated
at the central link of the chain as a function of the chemical
potential μ for different chain sizes.

For small values of μ such that the system is in the topo-
logical phase, EE is constant and pinned at ln(3) (main panel
of Fig. 9). This is consistent with previous DMRG results for
Z3 parafermion chains [42]. As μ increases and the system
approaches the topological phase transition, the EE increases,
reaches a maximum near the phase transition, and then de-
creases. This behavior is accentuated for larger chains, as
shown in Fig. 9.

V. CONCLUDING REMARKS

In conclusion, in this paper we study a family of purely
one-dimensional fermionic models which map into a Kitaev-
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FIG. 9. Entanglement entropy (E.E.) dependence with doping for
different chain lengths of 16 (solid black), 48 (dashed red), and 100
(dotted blue). Note that far away from the phase transition all of them
have the same value.

like chain of Z3 parafermions. Similarly to the case of
Majorana zero modes, the system has a topological phase with
exponentially localized Z3 parafermionic modes at its ends.

A key element in the proposed models is the presence of
strong, Hubbard-like, repulsive interactions of strength UH on
each site of the fermionic chain, effectively restricting the
local Hilbert space to a t − J model-like basis of zero and
singly occupied (spinful) fermionic states. Within this basis,
an exact the mapping of the parafermion chain to a fermionic
model is obtained. Even though the mapping is exact only
in the UH → ∞ limit, we show (see Appendix C) that the
parafermionic phase is present even for moderate values of
the interaction in the range UH/t � 10.

Although this mapping produces nonphysical parity-
breaking terms, we show that such terms can be understood
as a mean-field reduction of a parity-preserving three-body
interaction term. In fact, we establish that this rather ex-
otic three-body, spin-flipping interaction term is directly
responsible for the existence of a Z3 topological phase with
parafermionic edge modes. More importantly, we show that
the ground state of the resulting Hamiltonian does have a well-
defined parity and cannot be understood as a combination of
symmetry-broken Z2 Majorana modes.

The existence of a topological phase in the fermionic mod-
els is strongly implied by the threefold degenerate ground
states with gapless edge states and their properties such as
indistinguishability by local operators and protection against
disorder and Z3-symmetry-preserving impurities. In this re-
gard, we should note that similar parafermionic modes have
been referred to as “nontopological parafermions” [28] or the
“poor man’s parafermion” [26] in previous studies.

Our DMRG calculations show topological phase transi-
tions as a function of several parameters. We show that phase
transitions can be characterized by different metrics such as
many-body gap closings and openings, changes in the ground-
state degeneracy, and peaks in the entanglement entropy.
These calculations confirm the topological equivalency of the
fermionic models and the parafermion chain and provide a
way to probe the robustness of the topological phase against
one-body terms such as on-site Zeeman field in the z direction
and changes in the chemical potential. In particular, we show
that an in-plane (xy) magnetic field can produce phase transi-
tions depending on the angle θ between x and y components.

This produces a threefold anisotropy in the energy gap and
ground-state degeneracy with θ stemming from the expected
Z3 symmetry of the original fermionic Hamiltonian.

Moreover, the FPF-SF confirms the exponential localiza-
tion of the parafermionic modes deep in the topological
regime for both HI and HII models. As the system approaches
the phase transition, the FPF-SF becomes more delocalized as
the edge modes located at opposite ends of the chain overlap
with each other. Such finite-size effects turn out to be very
relevant for small chains (less than ≈100 sites).

Finally, while these results are an important step in
understanding how Z3 (and more generally odd-N ZN )
parafermionic modes can emerge in purely fermionic systems,
there are certainly several questions open. For instance, can
one detect Z3 parafermionic modes using coupling to real
fermions as in the Z4 case [34]? Can these modes be used
to produce topologically protected Fibonacci anyons [8]? Do
these modes have different braiding statistics from pure (non-
fermionic) Z3 parafermions, similar to Z4 parafermions [29]?
These are all relevant questions which should be explored in
future works on the topic.
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APPENDIX A: FERMIONIZATION

In order to find a representation of the parafermionic
Hamiltonian, HPF = −J

∑L−1
j=1 ψ jχ

†
j+1 + H.c., [Eq. (6)], and

its dangling parafermions in terms of fermionic operators, it is
useful to consider FPF operators [31,52]. These operators act
in the space of states with a well-defined Fock-parafermion
number. Each parafermion can be described in terms of cre-
ation (d†) or annihilation (d) operators, which, respectively,
increase and decrease the FPF number, as

ψ j = d jω
Nj + d†2

j , χ j = d j + d†2
j , (A1)

where Nj = d†
j d j + d†2

j d2
j is the number of FPFs and can be

either 0, 1, or 2. Because of Eq. (A1), FPF operators must
satisfy relations similar to parafermions [52]:

d jdl = ω dld j, d jd
†
l = ω d†

l d j for l < j,

d3 = d†3 = 0,

d†m
j dm

j + d3−m
j d†3−m

j = 1 for m = 1, 2. (A2)

In order to represent operator d in a fermionic repre-
sentation, we choose a mapping between FPF number and
fermionic number basis such that each state in the t − J
fermionic basis [41] (|E〉, c†

↑|E〉, and c†
↓|E〉, with |E〉 a vac-

uum state) corresponds to one state in the FPF number basis
(|0〉, |1〉, |2〉). This mapping can be summarized as

|2〉 d−→ |1〉 d−→ |0〉 d−→ ∅,

c†
↓|E〉 d−→ c†

↑|E〉 d−→ |E〉 d−→ ∅. (A3)
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With this in mind, it is straightforward to a find a repre-
sentation of FPF operators, d = c↑ + c†

↑c↓. It is also easy to
see that Eq. (A3) satisfies all FPF operator relations. However,
since the FPF operators operate in real space (sites in a chain),
we need to consider Jordan-Wigner (JW) string factors for
both FPF operators and fermionic operators [31,52]:

d j = ω
∑

p< j Np
[
(−1)

∑
p< j npc↑, j + c†

↑, jc↓, j
]
, (A4)

d2
j = ω

∑
p< j 2Np

[
(−1)

∑
p< j npc↓, j

]
, (A5)

where np is the occupation number (0 or 1) of site p and Np =
n↑,p + 2n↓,p.

An important consequence of these strings is that FPF
operators have two distinct long-range behaviors, namely,
(i) a JW-like string which depends on the FPF number Np

applied uniformly to terms and (ii) a JW string which de-
pends on the fermionic occupation np applied only on single
fermion operators. This is more distinct than in the case of
Z4 parafermions where all terms have the same parity and
string factor [53]. This means that, apart from the expected
Jordan-Wigner string, the Hamiltonian is local in the FPF
space (although nonlocal in the fermionic basis), allowing one
to derive local quantities that identify the edge states.

The parafermion operators χ j and ψ j can be easily written
in terms of the usual fermionic operators as

χ j = ω
∑

p< jNp
{
(−1)

∑
p< jnp[c↑, j + c†

↓, j] + c†
↑, jc↓, j

}
,

ψ j = ω
∑

p< jNp
{
(−1)

∑
p< jnp[ωc↑, j + c†

↓, j] + ω2c†
↑, jc↓, j

}
.

(A6)

In particular, we have the dangling parafermion modes
written as

χ1 = c↑,1 + c†
↓,1 + c†

↑,1c↓,1,

ψL = ω
∑

p<LNp
{
(−1)

∑
p<Lnp[ωc↑,L + c†

↓,L] + ω2c†
↑,Lc↓,L

}
.

(A7)

Notice that ψL contains information of the fermionic oc-
cupation in the central chain sites. This means that the edge
modes are affected by the bulk states via Jordan-Wigner
strings. While this also occurs in the Z4 case [31], the differ-
ence here is that the strings are not applied uniformly in every
term, due to absence of a well-defined parity of the operators.

Using the above relations (A6), we can express the Hamil-
tonian HPF in terms of fermionic operators:

HPF = −J
L−1∑

j=1

ψ jχ
†
j+1 + H.c.

= −J
L−1∑

j=1

{
(−1)

∑
p< jnp[c↑, j − ic†

↓, j] + ic†
↑, jc↓, j

}

× {
(−1)

∑
p< j+1np[c†

↑, j+1 + ic↓, j+1] − ic†
↓, j+1c↑, j+1

}

+ H.c., (A8)

which is equal to HII when t = � = W3 = W4 = J .

APPENDIX B: MEAN-FIELD DERIVATION

In this Appendix, we use mean-field arguments to obtain
an expression similar to Eq. (7) starting from Eq. (4).

We start with the spin-up terms in Eq. (4):

c†
↑,i−1c↓,i−1c†

↑,ic↓,ic
†
↑,i+1c↓,i+1

≈ 〈c†
↑,i−1c↓,i−1c†

↑,i〉c↓,ic
†
↑,i+1c↓,i+1

+ 〈c†
↑,i−1c↓,i−1c↓,i〉c†

↑,ic
†
↑,i+1c↓,i+1

+ c†
↑,i−1c↓,i−1c†

↑,i〈c↓,ic
†
↑,i+1c↓,i+1〉

+ c†
↑,i−1c↓,i−1c↓,i〈c†

↑,ic
†
↑,i+1c↓,i+1〉 (B1)

where we use the commutation relation [c†
↑,i, c↓, j] =

δi, jc
†
↑,ic↓,i arising from the t − J model requirement of exclu-

sion of double occupancy states.
Assuming a spatially isotropic and SU (2)-symmetric spin,

the expectation values in Eq. (B1) should be proportional to
(−1)

∑
p<i np . Indeed this can be seen by calculating the expec-

tation value 〈c†
↑,i−1c↓,i−1c†

↑,i〉 for the ground state of HII in the
case of t = � = W3 = W4 (when it is mapped exactly to HPF).
In order to compute the trifermion expectation value, we go to
the Fock-parafermion basis:

〈c†
↑, j−1c↓, j−1c†

↑, j〉 = 〈
(−1)

∑
p< jnpd†

j−1d2
j−1ω

Nj d jd
†2
j

〉
, (B2)

and since we are at zero temperature the expectation value will
be the average over the ground states. We can check if this
expectation value can be different from zero by considering
the Z3 parafermion ground state of HPF with L sites and total
Fock-parafermion number i given by [43]

∣∣gL
i

〉 = 1√
3L−1

∑

{Nj} such that∑
j Nj=i mod 3

L⊗

j=1

|Nj〉, (B3)

which, in turn, can be written in terms of a chain with L − 2
sites and two sites at one of the ends or two sites at position s
and s + 1 together with two chains with s − 2 and L − s − 1
sites:

|gi〉 = 1√
3

2∑

k=0

2∑

l=0

| fi−k〉 ⊗ | fk−l〉 ⊗ ∣∣gL−2
l

〉
,

|gi〉 = 1√
3

2∑

k=0

2∑

l=0

∣∣gL−2
l

〉 ⊗ | fi−k〉 ⊗ | fk−l〉 ,

|gi〉 = 1

3

2∑

a=0

2∑

k=0

2∑

l=0

∣∣gs−2
a

〉 ⊗ | fi−k〉 ⊗ | fk−l〉 ⊗ ∣∣gL−s
−a+l

〉
,

(B4)

where | fi〉 is the state of a single site with FPF number fi, such
that 〈 f j | |dk | fi〉 = δ j,i−k for k � i and zero otherwise. When
we apply d†

j−1d2
j−1ω

Nj d jd
†2
j on |gi〉 the only nonzero terms are

sums with i − k = 2 and k − l = 0. Because of the structure
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FIG. 10. Gap dependency with Hubbard interaction in a double
occupancy basis. The gaps of the 16-site chain (red dashed) and
100-site chain (solid black) have minor differences only in the low
interaction regime, UH ≈ t .

of the ground state we can compute the expectation value of
Eq. (B2):

〈gi| (−1)
∑

p< jnpd†
j−1d2

j−1ω
Nj d jd

†2
j |gi〉

= 1

9

∑

a,k,l

〈
gj−2

a

∣∣ (−1)
∑

p< j−1np
∣∣gj−2

a

〉 〈 fi−k| d†d2(−1)n | f2〉

× 〈 fk−l | ωN dd†2 |0〉

= −ω

9

∑

a

〈
gj−2

a

∣∣ (−1)
∑

p< j−1np
∣∣gj−2

a

〉 = ω(−1) j−1

3 j
(B5)

where we used Eq. (B4) to calculate the sum of the string fac-
tors,

∑
a 〈gj−2

a | (−1)
∑

p< j−1np |gj−2
a 〉 = (−1/3) j−2. This means

that this correlation decays away from the first site j = 1.
This does not imply that there is no parafermion in HI as we
consider only one way of pairing the operators. To recover
the expression of H3, we need to substitute the average value
of the string by its operator, 〈(−1)

∑
p< jnp〉 → (−1)

∑
p< jnp , and

we obtain

H (6)
MF = −WMF

L−1∑

j

(−1)
∑

p< jnp[(c↑, j + c†
↓ j )c

†
↓, j+1c↑, j+1

+ c†
↑, jc↓, j (c

†
↑, j+1 + c↓, j+1)] + H.c., (B6)

which is the similar to Eq. (7) for an infinite chain, i.e., without
edges.

APPENDIX C: ALLOWING DOUBLE OCCUPANCY

In the previous sections, we considered a local fermionic
basis excluding the double occupancy state, c†

↓c†
↑ |E〉. A con-

sistency check for this approach would be to include this state
in the fermionic basis along with a Hubbard interaction in
each site, UH n↑n↓, and then take the limit UH → ∞. In this
Appendix, we perform this consistency check and show that
indeed we recover the main text’s results.

Figure 10 illustrates the persistence of the parafermionic
phase already for relatively small values of UH relative to the
hopping t (say, UH/t ≈ 1–5). For UH � t , the gap becomes
completely independent of the chain size, and we recover
the expected Egap/t = 3. This shows that a large Hubbard
(on-site) interaction is not necessary for the formation of Z3

parafermions and that finite-size effects are not relevant in this
regime.

APPENDIX D: FPF SPECTRAL FUNCTION DERIVATION

In this section, we show that the FPF spectral function
for a ZM parafermion chain with two dangling parafermions
described by Eq. (6) is given by A j = 2π 2

M2 (δ1, j + δL, j ). In
this Appendix only we consider ω = e2iπ/M . In this section we
use a generalization of the ground state shown in Appendix B
for M � 2.

We start with the FPF spectral function, defined by
Eq. (17). We can write it as

A j (E
′) = 2π

NGS

∑

|ϕ〉|g〉
δ(E ′ + Eϕ − E0)| 〈ϕ| d jω̄

Nj |g〉 |2

+ δ(E ′ − Eϕ + E0)| 〈ϕ| ω̄Nj d†
j |g〉 |2, (D1)

where we sum over all ground states |g〉 and divide by its
degeneracy nGS. The state |ϕ〉 is an eigenstate of the Hamil-
tonian with energy Eϕ . As we show later, it is important
to consider d jω̄

Nj [54] instead of just d j due to symmetry
of the spectral function. While the former has a symmetric
zero-energy spectral function along the chain, the latter will
have the zero-energy spectral function on the first site, j = 1,
(M − 1)2 times larger than on the last site, j = L.

For a generic chain with L sites, the ground state of HPF for
ZM parafermions with total FPF number i [43] is given by

∣∣gL
i

〉 = 1√
ML−1

∑

{Nj} such that∑
j Nj=i mod M

L⊗

j=1

|Nj〉, (D2)

which, in turn, can be written in terms of a chain with L − 1
sites and a single site at one of the ends or a single site at
position s and two chains with s − 1 and L − s sites:

|gi〉 = 1√
M

M−1∑

k=0

| fi−k〉 ⊗ ∣∣gL−1
k

〉
, (D3)

|gi〉 = 1√
M

M−1∑

k=0

∣∣gL−1
k

〉 ⊗ | fi−k〉 , (D4)

|gi〉 = 1

M

M−1∑

a=0

M−1∑

k=0

∣∣gs−1
a

〉 ⊗ | fi−k〉 ⊗ ∣∣gL−s
−a+k

〉
. (D5)

It is straightforward to see that at positions j = 1, L we
have a sum over M − 1 different powers of ω, and its absolute
value is always 1. This leads to | 〈gL

i−1| d jω̄
N
j |gL

i 〉 | = 1/M2. In
the bulk, Eq. (D5), we need to consider the FPF commutation
relations, Eq. (A2).

Applying dj at |gi〉, with j in the bulk, does not only
decrease the FPF number in one but also adds a phase that
depends on the FPF number that precedes it:

d jω̄
N |gi〉 = 1

M

M−1∑

a=0

M−1∑

k=0

ωa−i+k+1
∣∣gj−1

a

〉

⊗ d | fi−k〉 ⊗ ∣∣gL− j
−a+k

〉
, (D6)
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such that 〈gi−1| d jω̄
Nj |gi〉 ∝ ∑M−1

a=0 e2π ia/M = 0. The same
procedure can be done for ω̄N

j d†
j and yields the same result.

Therefore, the spectral function, at zero energy, of a ZM

parafermion chain is given by

A = 2π

NGS

∑

|ϕ〉|g〉
| 〈ϕ| d jω̄

Nj |g〉 |2 + | 〈ϕ| ω̄Nj d†
j |g〉 |2

= 2π
2

M2
(δ1, j + δL, j ). (D7)

We also note that using only d j instead of d jω̄
Nj leads to

an asymmetry between sites 1 and L which does not make
sense in terms of how the parafermions are localized. This
fact is unrelated with the fermionic basis (and its long-range
interaction) and happens in “pure” parafermion models [43].
In addition, the phase factor ω̄N

j is not unique. A factor such
as ωNj/2 would also work, albeit it introduces an additional
scale factor related with the parafermion chain length. Other
powers of ωN

j might also work but they are not universal, i.e.,
they would depend on the value of M of the ZM parafermion.
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