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We apply the adaptive time-dependent density-matrix renormalization-group method �tDMRG� to the study
of transport properties of quantum-dot systems connected to metallic leads. Finite-size effects make the usual
tDMRG description of the Kondo regime a numerically demanding task. We show that such effects can be
attenuated by describing the leads by “Wilson chains,” in which the hopping matrix elements decay exponen-
tially away from the impurity �tn��−n/2�. For a given system size and in the linear-response regime, results for
��1 show several improvements over the undamped �=1 case: perfect conductance is obtained deeper in the
strongly interacting regime and current plateaus remain well defined for longer time scales. Similar improve-
ments were obtained in the finite-bias regime up to bias voltages of the order of the Kondo temperature. These
results show that with the proposed modification, the tDMRG characterization of Kondo correlations in the
transport properties can be substantially improved, while it turns out to be sufficient to work with much smaller
system sizes. We discuss the numerical cost of this approach with respect to the necessary system sizes and the
entanglement growth during the time evolution.
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I. INTRODUCTION

The current excitement in the condensed-matter and ma-
terials science communities surrounding the study of nano-
scale transport stems from both the potential applicability in
molecular electronic devices1 and the possibility of designing
nanostructures to realize quantum impurity Hamiltonians.
Hallmark experimental achievements include the observation
of the Kondo effect in quantum dots,2,3 molecules,4

nanotubes,5,6 and non-Fermi-liquid behavior in quantum-dot
structures.7

While transport is an intrinsic nonequilibrium situation, in
the linear-response regime transport coefficients are com-
monly derived from equilibrium correlation functions.8,9 A
prominent numerical tool for describing the equilibrium
Kondo regime is Wilson’s numerical renormalization-group
method �NRG�. In the original NRG formulation for the
Kondo model,10,11 Wilson showed that the contribution from
band states exponentially close to the Fermi energy needs to
be taken into account in order to capture the correct proper-
ties of the ground state. For this reason, standard tight-
binding numerical approaches face a formidable challenge in
addressing this problem: finite-size effects set a minimum-
energy scale, the level spacing, below which the calculation
cannot capture the crossover to the Kondo state.12–14

Wilson proposed a combination of two elements to handle
this problem: �i� a discretization procedure of the metallic
band, leading to a mapping into an impurity connected to a

one-dimensional tight-binding chain with exponentially de-
caying hoppings �we will refer to such leads as Wilson
chains in this work� and �ii� a nonperturbative renormaliza-
tion procedure that probes successive energy scales by recur-
sively diagonalizing the Hamiltonian and keeping the rel-
evant states at each scale.

Recent theoretical15–31 and experimental efforts32 aim at
observing and modeling genuine nonequilibrium physics. A
particularly important question is under what conditions
steady-state situations can be reached in numerical simula-
tions, and promising results have been obtained using time-
dependent approaches.20–25 Such ideas have been pursued
using both the density-matrix renormalization-group
�DMRG� technique33–36 and the NRG,11,22–24 in the former
case utilizing the adaptive time-dependent DMRG
�tDMRG�.37,38

Moreover, the incorporation of ingredients of DMRG into
NRG and vice versa has led to a significant extension of both
methods.22,39–43 A prominent example is the use of Wilson
chains in DMRG for the description of the Kondo regime of
the Anderson impurity model in Refs. 40 and 41, where in
Ref. 41 the common mathematical structure of NRG and
�single-site� DMRG in terms of matrix-product states has
been exploited. Recently, a similar idea has been successfully
explored within a cluster-embedding approach, resulting in
the development of the so-called logarithmic discretization
embedded-cluster approximation �LDECA�.44

The advantage of DMRG is its flexibility: it is in principle
possible to model complex interacting regions35 or to incor-
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porate interactions into the leads �see, e.g., Ref. 45�. More-
over, it is the numerical method of choice for one-
dimensional bulk systems, and it allows for the calculation of
extended correlation functions in a straightforward way. For
the description of transport phenomena, there is no restric-
tion to work in the small bias regime, as finite biases can be
incorporated into time-dependent simulations.20,21,25

In transport investigations based on DMRG, several
groups have introduced modifications in the contact leads,
such as the logarithmic discretization, to improve the results
of either the ground state40,41 or tDMRG calculations. These
also include damped boundary conditions20,46 and a
momentum-space representation of the leads.47 In the latter
work, an interacting resonant-level model has been studied
with tDMRG and, effectively, a logarithmic discretization of
the leads has been used. Working with different kind of leads
while preserving the main physical properties of the system
has thus proven to be a promising path that we will further
pursue in this work.

It is the purpose of this paper to perform a numerical
real-time analysis of Kondo correlations in quantum-dot
problems using tDMRG and Wilson chains. We show that
compared to a previous study by some of us,20 a correct
description of transport through a quantum dot can be ob-
tained deeper into the Kondo regime and using much smaller
system sizes. While a tDMRG analysis of the Kondo regime
based on a real-space description is hampered by finite-size
effects in the leads, we show that an appropriate choice of
hopping amplitudes in the leads nicely circumvents such
problems.

In this sense, the discretization scheme proposed by Wil-
son is a natural choice: the noninteracting tight-binding chain
becomes an effectively metallic system with reduced level
spacings, corresponding to a subset of states directly coupled
to the impurity in the continuum limit.9,10 In addition, it turns
out to offer advantages in the time-dependent description as
well: for a given system size, it substantially increases the
characteristic time scales over which a constant current flows
between the leads before reaching the system’s boundary.
This turns out to be crucial deeper into the Kondo regime
�i.e., for small Kondo temperatures�, as constant currents sus-
tained over longer time scales are necessary to access the
regime of coherent transport through the sharp resonant
Kondo state.15,17,48 We also discuss and study the influence
of the discretization at finite bias. In the low-bias regime, the
logarithmic discretization gives the correct description of the
Kondo regime; at large bias, �where the Kondo effect is ef-
fectively destroyed�, a linear discretization of the leads and
larger chains should be used.

The paper is organized as follows. In Sec. II we introduce
our approach, using the example of a single-quantum dot
connected to metallic leads out of equilibrium treated with
the tDMRG method. Results for the time-dependent currents
and charge transfer are discussed in Secs. III and IV, respec-
tively. Particular emphasis is devoted to describing the im-
provements obtained by choosing a ��1 model over the
�=1 case and to the dependence of our results on both the
discretization parameter and the system size. Moreover, we
discuss the conductance results taken from the time-
dependent data in Sec. V. In Sec. VI, we provide a discussion

of how to approach the finite-bias regime by combining
tDMRG data obtained from discretized and tight-binding
leads. We present a summary in Sec. VII. Appendixes A and
B conclude this work: Appendix A contains our results for
the noninteracting case and Appendix B provides a discus-
sion on the computational aspects of our approach and the
entanglement growth during the time evolution.

II. MODEL AND SETUP

As a case study of the proposed modification of the
method, we apply tDMRG to a model representing a single-
quantum dot connected to metallic leads. The equilibrium
and linear-response properties of this system are well known
and provide a natural benchmark against which we can com-
pare the tDMRG results.

The quantum dot is modeled by a Hubbard site with an
on-site interaction U and a gate potential Vg coupled to non-
interacting tight-binding chains, representing the leads, as
depicted in Fig. 1. The dot-lead couplings are labeled by t�.
The full Hamiltonian reads H=Hdot+Hdot-leads+Hleads, with

Hdot = Vgn̂0 + Un̂0↓n̂0↑,

Hdot-leads = − t� �
�=R,L

�c0,�
† c1,�,� + H.c.� ,

Hleads = − �
�,�=R,L

�
n=1

N�

tn�cn,�,�
† cn+1,�,� + H.c.� , �1�

where cn,�,�
† creates an electron with spin � at site n in lead

� �n=0 is the dot site�, N� counts the number of sites in lead
�, and n̂i�=ci,�

† ci,�; n̂i= n̂i↑+ n̂i↓ with i=0, �n ,��. The total
number of sites is thus N=NL+1+NR. Our results were ob-
tained using “even-1-odd” chains, with NL=N /2 and NR
=N /2−1. Note that finite-size effects due to different cluster
types, as discussed in Ref. 49, vanish at sufficiently large �.

In the spirit of Wilson’s discretization scheme, we con-
sider the hopping matrix elements tn in the leads to decay
exponentially as

tn = t0�−n/2, �2�

where ��1 is the “discretization parameter” from Wilson’s
original formulation.

Unless otherwise noted, in the following we set t0=1, U
=1, and Vg=−U /2 �particle-hole symmetric point�. We focus
on results for N=32 sites for ��1 and up to N=128 sites for
�=1. We usually work at half filling of the whole system. In
the range of parameters considered, the equilibrium ground-
state properties for ��1 do not change significantly upon

U, Vg

1t 2t 3t1t2t3t t’ t’

FIG. 1. �Color online� Schematic representation of the model
describing a quantum dot �large circle, blue in the online version�
connected to left and right leads.
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increasing N beyond a certain N�����50 at a given �, as we
have numerically verified for a few cases. This is consistent
with NRG runs for an Anderson model with similar param-
eters, which reach the Kondo fixed point with less than 50
iterations for ��2–3.

Details on the tDMRG can be found in Refs. 37 and 38.
We use a Trotter-Suzuki breakup of the time-evolution op-
erator and typical time steps of 	
=0.01–0.1. A larger time
step 	
�0.4 is sufficient when deeper in the Kondo regime
�large U / t�2� as resonant transport is dominated by a small
energy scale, the Kondo temperature, corresponding to long-
time scales.17,48 Note that we denote time by the symbol 

and it is measured in units of � / t0. The truncated weight 	�
during the time evolution is typically kept below 110−7

�see Appendix B for a discussion�.
In order to drive a current, we first compute the ground

state of the system without a bias. The bias is applied as

Hbias =
�V

2 �
n=1

NR

n̂R,n −
�V

2 �
n=1

NL

n̂L,n �3�

in the leads at time 
 and we then evolve in time under the
dynamics of H+Hbias. We typically work at a small bias of
�V=0.005 �the finite-bias case is discussed in Sec. VI�. The
current J�
� is measured as the average over the expectation
values of the local current operator

Ĵ1,� = it��
�

�c0,�
† c1,�,� − H.c.� , �4�

on the links connecting the dot to the leads. This means that
we first take its expectation value in the time-dependent
wave function and then average over the two local currents
on the links directly connected to the dot. We have tried
other spatial forms for the applied bias, e.g., a broadened
step function.38 This mostly affects the short-time transient
behavior but leaves unaffected the average value of the cur-
rent taken over time �see Sec. V�. Further details on the setup
can be found in Ref. 20.

III. TIME-DEPENDENT CURRENTS

Figure 2 shows the current J�
� �in units of e2 /h� as a
function of time and divided by the external bias �V at U
=1 and t�=0.4. This corresponds to a ratio of U /�=3.125,
where �=��leads�t��2 is the hybridization parameter and
�leads=2 / ��t0� is the density of states of the leads in the limit
of �=1 and long chains.

Figure 2�a� contains the results for N=16,32,64,128 at
�=1, reproducing those of Ref. 20. The other two panels
display J�
� /�V for �b� N=16 and �c� N=32 computed with
�=1,21/4, �2, and 2.

The comparison between Figs. 2�a� and 2�c� is revealing.
In the �=1 case, the conductance plateaus become longer
and higher as the system size increases20 with the “plateau
length” ��
st� increasing linearly with N. For N=128 sites, a
nearly perfect conductance plateau with G�
�	G0 is ob-
tained for these parameters. A finite-size scaling analysis
done in Ref. 20 for U /�=3.125 shows that G→G0 for N−1

→0.

As previously argued in Ref. 20, this plateau signals the
formation of a Kondo state in the system formed by the
quantum dot and the leads. A similar Kondo conductance
plateau can be obtained by increasing � while keeping the
system size constant, as shown in Figs. 2�b� and 2�c�. Inter-
estingly, for N=32, a plateau with an average conductance of
G	G0 can be obtained with �=2. Thus, an accurate de-
scription of the Kondo regime can be obtained using a rela-
tively small system by taking ��1.

Notice that the J�
� /�V curve for �=2 and N=32 is simi-
lar to the corresponding one for N=16: an increase in system
size had little effect in the current in this case, as opposed to
the �=1 curves. This weak dependence of J�
� on N for
large enough N and � is a general feature of the ��1 case
and it is a consequence of the exponential decrease in the
hopping matrix elements tn at large n.

This allows us to formulate some key results that can be
inferred from this plot: �i� by comparison of Figs. 2�a� and
2�c�, we find that with discretized leads, a four times smaller
system size is sufficient to obtain roughly the same average
current. �ii� At ��1 and for a given N, the current plateaus
are longer in time and, on the time-scales simulated, we do
not observe a recurrence �bouncing current� in the case of
N=32. �iii� Oscillations about the average value of the cur-
rent tend to increase with �.

The small time-scale oscillations are a general feature of
the ��1 case, which emerges in the U=0 case as well, as
we have verified with exact diagonalization �see Appendix
A�. We have conducted extensive checks to rule out either
the truncation error during the time evolution or the size of
the time step as possible sources of such oscillations at finite
U. In fact, the position of the peaks and valleys of the oscil-
lations as seen in Figs. 2�b� and 2�c� are � dependent: for a
given �, the position of these peaks and valleys remains
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FIG. 2. �Color online� Conductance J�
� /�V for U=1, t�=0.4,
and Vg=−U /2. �a� Fixed ��=1� and N=16, 32, 64, and 128; �b� and
�c�: Fixed N. �b� N=16 and �c� N=32 with �=1, 21/4, �2, and 2.
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practically constant even when other parameters, such as t�
or Vg, are modified, while it changes as � is varied �see
Appendix A�.

The oscillations are reminiscent of the so-called “current
ringing” in mesoscopic transport.15 Similar current-ringing
effects have been observed in previous tDMRG studies of
noninteracting systems away from half filling or at finite
bias.21,38,50 In the present case of both a finite U and ��1,
the oscillations are present even at half filling and become
more prominent at larger values of �. We stress that the
oscillations seen in the ��1 case are an artifact of the dis-
cretization and are thus not a property of the �→1, N→�
limit. In practice, the oscillations can be reduced by using the
so-called z trick,11,51,52 which we illustrate in Appendix A for
the noninteracting case.

We attribute the increase in the average current on small
chains at larger � to a combination of mainly two factors: �i�
an effective reduction in the mean-level spacing in the leads
in equilibrium and, quite importantly, �ii� an increase in the
duration of the nonequilibrium current plateaus above a char-
acteristic Kondo time scale. As the exponential decay of hop-
pings leads to an exponential decrease in the velocity at
which charges move far away from the dot, those charges get
trapped at the leads and a recurrence, i.e., a reversal of the
current’s sign, is not observed. We will elaborate on this
point in Sec. IV.

Before turning to the calculation of conductances from
our time-dependent data, we will discuss the charge profiles
and charge transfer during the time evolution.

IV. CHARGE PROFILE AND CHARGE TRANSFER

Since no dissipative terms are included in Hamiltonian
�1�, the total charge is conserved at all times. Thus, the ex-
istence of a net current signals the transfer of charge from
one lead to the other. As time progresses, a saturation point
might be reached, opening the possibility for the current to
decrease and reverse sign and to transfer the excess charge
back to the original lead.20,21

This mechanism is shown, for instance, in Fig. 2�a� ��
=1�: for N=16 the current reverses sign around 
=9 while
for N=32 the sign reversal occurs at 
=18. Such sign rever-
sal also occurs for N=128 and �=1 at times 
�25.

Figure 3 shows the charge transfer into the left lead �L�
defined as �ni�
�= 
n̂i�
���

�nL�
� = �
i�L

�ni�
� − ni�0� . �5�

Notice that this quantity is related to the time-integrated
current through the dot: it hence reaches a maximum when-
ever the current changes sign. For �=1 and N=32, �nL�
�
reaches a maximum ��nL,max	0.01� at 
=18 while for �
=�2, it increases to about four times that value. Remarkably,
in order to obtain a similar charge-transfer enhancement with
“regular” leads ��=1�, a fourfold increase in the system size
is needed �open circles in Fig. 3�.

The approximately linear increase in �nL�
� is correlated
with the plateau in the current in both cases �compare with
Fig. 2�. We identify this as a general feature of the introduc-
tion of the decaying hopping matrix elements for a given
system size N: an enhanced charge transfer over longer time
scales.

This indicates that the exponential decay in the hoppings
increases the maximum charge that can be “stored” in the
leads or, in other words, it provides an increase in their ef-
fective “capacitance.” As a consequence, even small systems
can hold a larger amount of charge without reversing the
current, leading to longer constant-current plateaus.

The effect of ��1 can be illustrated by considering the
time evolution of the charge profile. Figure 4 shows the
charge nl�
� on each site l of the chain plotted against time
for a chain of N=32 sites. The top panel shows the �=1
case: charge is initially transferred from the left to the right
lead and back, leading to an oscillation in nl�
� with a maxi-
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FIG. 3. �Color online� Charge transfer for �=1, N=32 �dashed
lines�, �=1, N=128 �open circles�, and �=�2 and N=32 �solid
line�. The parameters are U=1, Vg=−U /2, and t�=0.4 �U /�
=3.125�. The maximum in the charge transfer for N=32 and �=1
indicates a reversal in the current.
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mum around 
=18, as expected. The charge versus time dia-
gram clearly shows a light cone with a wave front that propa-
gates at the Fermi velocity. Notice that the excess charge is
mostly accumulated in the vicinity of the dot, which we ex-
pect to modify the leads’ density of states “seen” by the dot.

This is in sharp contrast with the �=�2 case �bottom
panel�: a larger charge is transferred to the left lead and no
reflux is noticed. More importantly, the charge tends to ac-
cumulate toward the edge of the leads, with strong Friedel
oscillations. This can be intuitively understood from the ex-
ponential decrease in the couplings: the weak coupling of the
end sites with the remaining of the chain makes them good
“charge traps.”

V. CONDUCTANCE

We now turn to the linear conductance G�
��J�
� /�V
expressed in units of G0�2e2 /h. We will discuss the depen-
dence of G�
� on � and N at the particle-hole symmetric
point. For this purpose, we refer the reader back to Fig. 2.
Taking the example of �=2, we see that no significant dif-
ference exists between the conductance curves for N=16 and
32. In general, for a given � there exists a certain system
size above which no significant changes in properties, such
as the ground-state energy or the conductance, take place as
extra sites are added to the system.

In order to study the dependence of the conductance with
other parameters, we calculate the average conductance G
= 
G�
��
 over a plateau, e.g., those displayed in Fig. 2. This
procedure carries an intrinsic uncertainty which depends on
the truncated weight in the DMRG time evolution and, more
importantly, on the dispersion of G�
� around the average
due to the current-ringing effects at larger �. While the
former can be constrained below a target value by increasing

the number of states that are kept during the time evolution
�see the discussion in Appendix B�, the latter is intrinsic for
��1. We estimate such uncertainty by computing

	G = �
G�
�2�
 − 
G�
��

2, �6�

and indicate it as error bars in the figures. We remark that the
main contribution to 	G in the plots comes from the current-
ringing oscillations �see the analysis in Appendix A�.

Figures 5�a� and 5�b� show the scaling of G�
G�
��


with 1 /� for different values of U /� and for N=16 and 32,
respectively. The scaling is more conclusive for N=32: G
→G0 as 1 /� decreases, for U /��5. Most importantly, Fig.
5�b� establishes the convergence of the conductance in 1 /�
�obtained at a fixed system size� to the correct result, namely,
perfect conductance.

Figure 6 depicts results for G /G0 as a function of U /� for
N=32, �V=0.005, and �=1, 2, and 3. With ��1, we obtain
perfect conductance up to U /�	7. This constitutes a con-
siderable improvement over the �=1 case with N=32 �also
shown in Fig. 6�, for which perfect conductance plateaus
were not observed for nonzero U /�. Furthermore, we stress
that the ��1 approach also gives more well-defined pla-
teaus of constant currents, which in practice makes easier the
averaging of J�
� /�V over time.

The improvement previously discussed is anchored on a
combination of two key elements in the ��1 case: �i� an
effective reduction in the level spacing of the metallic leads
in equilibrium44 and �ii� the suppression of the current rever-
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sal, which is a consequence of the reduced velocity in the
leads when ��1. Both points are related to the exponential
decrease in the chain hoppings, which—in Wilson’s
scheme—can be traced back to a representation of the con-
tinuum of states directly connected to the quantum dot.

Point �ii� is important for the following reason: in reso-
nant transport, the typical time scale for reaching the steady
state is inversely proportional to the width of the
resonance.15,21 The typical time scale associated with the de-
velopment of the perfect conductance plateaus associated
with the Kondo state is thus 
K�� /TK.17,48 It is then crucial
that the current does not reverse sign before times of order 
K
have been reached.

As explained in Sec. III, for �=1 the plateaus last over
time intervals 
st�N and a compromise must be obtained
between TK and N such that the condition 
st�
K is fulfilled.
For ��1, this condition can be met by increasing � �instead
of N�, since 
st increases with �, as discussed in Sec. III.
Constant currents corresponding to perfect conductance can,
in principle, be reached for � values large enough so that

st����
K. In this sense, this requirement marks the regime
for which the steady state of this problem can be numerically
simulated.

Once the condition 
st����
K is fulfilled, one still needs
to run the tDMRG algorithm over time scales of order 
K to
obtain the Kondo plateau. Thus, for higher values of U /�
�i.e., higher 
K�, calculations over longer time scales are nec-
essary in order to reach nearly perfect conductance plateaus
in J�
�.15 This is, due to the entanglement growth in a global
quench,53,54 the true limitation of the method for Kondo
problems. Fortunately, the entanglement growth turns out to
be softer at large values of U /� �see Appendix B�, enabling
us to observe G	G0 for up to U /��7 and relatively short
�N=32� chains.

This argument is further supported by quantitative esti-
mates for 
K obtained with NRG �inset in Fig. 6�. We per-
formed NRG calculations for the Anderson model and ex-
tracted the Kondo temperature �and thus 
K� from the
magnetic-susceptibility curves for different values of U /�.55

For the parameters in Fig. 6, we obtain 
K�
st in the regime
where nearly perfect conductance is seen in the tDMRG
curves �
K�16 for U /�=3.125 and 
K�55 for U /�=5 in
units of � / t0�.56 For higher values of U /�, 
K becomes ex-
ponentially large. In particular, for U /��7, 
K calculated
from NRG becomes of the order of the maximum time scales
used in our tDMRG simulations. This explains the noticeable
deviation of G from the Kondo value for U /��7.

In short, the tDMRG results obtained with ��1 consti-
tute a considerable improvement over the �=1 case, as
shown in Fig. 6 for N=32. This plot illustrates the range of
parameters for which the Kondo regime is accessible with
tDMRG and ��1, as well as the typical system sizes.

VI. FINITE BIAS

In this section, we address the case of a current through a
quantum dot in the Kondo regime driven by a finite bias.
Although a comprehensive theoretical understanding of this
nonequilibrium regime is yet to be achieved, one commonly

expects the applied bias �V to disrupt the Kondo state for
bias voltages larger than TK while Kondo-type properties are
only marginally affected for �V�TK.25,29–31 We investigate
the transport properties of the system in these two regimes.
In the following, we fix the parameters to U /�=3.125 at the
particle-hole symmetric point �Vg=−U /2� for which we have
independently determined TK from NRG calculations56 �see
the inset in Fig. 6�.

Qualitatively, we expect the linear regime �i.e., nearly per-
fect conductance� to extend up to biases �V�TK. The cur-
rent versus bias curve should then smoothly drop to zero at
larger biases. We argue that, in the spirit of Secs. III–V, in the
regime �V�TK, the finite-bias regime should best be ex-
plored with logarithmically discretized leads for which the
Kondo state is better described.

By contrast, in the opposite limit of �V�TK, the scan in
bias will need the high-energy features �such as the band
curvature in the leads� to be well resolved as the contribution
to the current from states with energies within the Fermi
levels in the left and the right leads becomes important.
Therefore, at �V�TK, the best approach is to use �=1 in
the tDMRG calculations and subsequently perform a finite-
size scaling analysis of the average currents.

Our results are illustrated in Fig. 7. Figure 7�a� shows the
current versus time for different bias values and �=1, N
=72 and �=2, and N=32. As a general feature, the average
current 
J�
 increases with the bias �V in all cases, also seen
in Fig. 7�b�. Moreover, it is evident that for the values of �V
depicted in Fig. 7�a�, runs with either �=1 or �=2 give a
qualitatively similar behavior.

A more quantitative analysis of the 
J�
��V� curves ob-
tained from the tDMRG data is presented in Figs. 7�b� and
7�c�. Deviations from perfect conductance �
J�
=G0�V� are
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FIG. 7. �Color online� �a� Current J�
� versus time for �V
=0.1,0.2,0.3 and �=1 �N=72� and �=2 �N=32�. �b� Average cur-
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clear at large bias �Fig. 7�b�. At small biases, the results are
better visualized by numerically calculating the differential
conductance d
J�
 /d��V� shown in Fig. 7�c�. For small �V,
this quantity is equivalent to the linear conductance.

For �=1 and N=72 sites, we see that the corresponding
d
J�
 /d��V� curve is substantially below G0 for �V�TK in
sharp contrast with the �=2 results, emphasizing the impor-
tance of using Wilson chains at small biases. At large biases,
we have performed a finite-size scaling analysis with N
�80, and we conclude that the data displayed in Fig. 7�c� are
converged down to �V�0.15 with an uncertainty of
	�d
J�
 /d��V��0.01.

In an intermediate bias regime of TK��V�0.15, the �
=1 results are still plagued by finite-size effects, while the
�=2 results overestimate the actual steady-state currents. In
this regime, a discretization scheme with a bias-dependent �
will likely be the best choice. Qualitatively, one can estimate
the expected result by a linear interpolation between the �
=1 and ��1 data, as illustrated by the dotted line in Fig.
7�c�

Finally, note that the finite-bias regime of a single-
impurity Anderson model was studied with tDMRG by
Kirino et al.25 for U /��2.8 and system sizes of up to N
=64 �all at �=1�. Here, we slightly exceed that regime by
working at U /�=3.125, and we also consider larger system
sizes of N=64,72,80. Our key point though is that tDMRG
runs at �V�TK notoriously improve and correctly capture
Kondo correlations when performed with Wilson chains.

VII. SUMMARY

In this paper, we applied the tDMRG method to the study
of transport through a quantum dot coupled to noninteracting
leads with a logarithmic discretization. This yields a consid-
erable improvement over tDMRG studies with real-space
tight-binding leads, as it extends the parameter space in
which known exact results can be reproduced. One of the
main advantages of the approach is that smaller chains are
sufficient to obtain the expected result of a perfect conduc-
tance for the single-impurity problem at particle-hole sym-
metry.

In spite of the challenges imposed by the longer time
scales needed for the description of the Kondo regime, the
study of transport properties in nanostructures with time-
dependent DMRG brings several advantages over other
methods: it is straightforward to adapt codes to more com-
plicated geometries and time-dependent Hamiltonians, in-
cluding correlation effects in the leads, as well as systems far
from equilibrium, such as transport beyond the linear-
response regime �finite bias�.25 For the latter example, we
presented a case study at an intermediate U /� to argue that
for bias values ��V�TK�, a logarithmic discretization should
preferentially be used; while at large bias, a regime in which
high-energy features of the leads dominate, a tDMRG study
with �=1 and a finite-size scaling analysis yields better re-
sults.

Furthermore, we believe the general concept of utilizing a
logarithmic discretization in tDMRG can have a broader
range of applicability in the description of Kondo systems. In

particular, it can play a key role in the calculation of non-
equilibrium dynamic correlation functions, as recently high-
lighted in NRG-based approaches.24
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APPENDIX A: NONINTERACTING CASE

In this appendix, we present exact diagonalization results
for the time dependence of the current Eq. �4� for a chain of
N=32 sites and t�=0.4. Figure 8 shows J�
� vs time for �
=1,1.4,2. Some main features induced by the discretization
discussed in Sec. III are already present in the noninteracting
case: �i� as � is increased, the sign reversal of the current
occurs at much later times and �ii� while the average current
in the U=0 case remains at G=G0, the dispersion around this
mean value is significantly enhanced by a ��1.

More specifically, by taking averages over suitable time
intervals, we find G /G0= �1.00�0.04� and G /G0
= �1.00�0.13� for �=1.4 and 2, respectivley. The deviations
are computed from Eq. �6�. We thus conclude that the oscil-
lations seen in Fig. 2 in the interacting case are due to the
discretization.

Moreover, from the noninteracting case we learn that us-
ing the logarithmic discretization, one manages to reproduce
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the average quite well. Once one has achieved that in the
interacting case for a pair of �N ,��, we expect that the os-
cillations will be reduced by increasing N and decreasing �
at the same time in a controlled way such that the average
current J�
� remains constant.

An alternative way of suppressing the oscillations induced
by the discretization is to exploit the so-called z trick.11,51,52

Indeed, this works quite well: the thick solid line in Fig. 8 is
obtained by using the z trick for �=2, which clearly im-
proves the data quality over the simple �=2 curve. How-
ever, it turns out to be necessary to average over many values
of z: results shown in Fig. 8 were obtained by averaging over
forty J�
� curves with z values ranging from 0 to 1. In prac-
tice, this makes this procedure numerically expensive for tD-
MRG calculations.

APPENDIX B: COMPUTATIONAL ASPECTS

As a key result of this work, we have argued that using
the logarithmic discretization much smaller chains than in
the �=1 case can be used to obtain equally good, if not
better, results for the conductance. This suggests a gain in the
computational costs needed to obtain the numerical results
by reducing the required system sizes roughly by a factor 4.

For a more stringent estimate of the computational effi-
ciency, we consider the entanglement growth during the time
evolution. We measure this quantity by computing the block
entropy Sl associated with the reduced density matrix �l of a
DMRG block of length l

Sl = − 
�l ln �l� . �B1�

The reduced density matrix �l is obtained at each step by
dividing the DMRG chain �the so-called superblock� into
“system” �size l� and “environment” parts and tracing out the
environment’s degrees of freedom �see, e.g., Ref. 35 for a
discussion of the DMRG method�. An increase in Sl renders
a simulation inefficient as time or system size grows, since
more DMRG states need to be kept in order to keep the
truncation error below a given threshold.

In Fig. 9, we plot the block entropy for a block of length
l=16 as a function of time, for two different values of
U /�=5 ��=1� and 8 ��=1,2 ,3�. Typically, the entropy rap-
idly increases at short times; but at times 
�3, it exhibits a
linear increase in time, i.e., Sl�
, for ��1. This is the ex-
pected behavior for a global quench,53,54,57 yet it is a non-
obvious one here as the excitations in the leads do not travel
at a constant velocity �see Fig. 4�b�. The oscillations in Sl�
�
seen in the �=1 case �dotted line� are due to the sign rever-
sal of the current. The key point is that the aforementioned
linear increase of Sl at ��1 is slow, i.e., the prefactor is
small. During the time interval 
� �5,100, Sl only grows by
a few percent. This is ultimately the reason why we can push
our tDMRG runs to times long enough to reach the steady
state for U /��7 at moderate numerical costs, especially
since the entanglement growth is the weaker the larger U /�
is.

We thus observe that the entanglement growth, i.e., the
increase in the entropy Sl, depends on both � and U /�. Yet,
it is fortunate that in the case where longer times are needed
in order to capture the steady-state current �large U /�� the
increase in Sl is weaker.

It is illustrative to give an example on what the entangle-
ment growth implies in practice for the numerical effort
when working at a fixed truncation error 	�. For U /�
=3.125, we find it sufficient to keep m�280 states at �=1
in order to ensure a maximum truncated weight of 	�
�10−7 on a chain of N=32 sites compared to m�1000 at
�=�2 and m�1600 at �=3 �both numbers refer to times

�30 with 	
=0.05�. At a larger U /�, say 12.5, this relaxes
to m�200 and m�400, for �=1 and �2, respectively.

We finally comment on the generic tDMRG errors, the
accumulated truncation error, and the Trotter error. These are
not independent: the smaller the time step, the faster trunca-
tion errors will accumulate.58 We justify our choice of pa-
rameters by considering the numerically worst case, i.e., a
small U /��3.

For most calculations, keeping a maximum of m=660
states up to times of order 
�50 is sufficient to keep the
truncation error below 110−7 ��310−7 in a few sweeps�.
More importantly, we have checked that keeping up to m
=1600 states, the current J�
� is practically converged: for
the case of Fig. 2�c� and �=2, the maximum relative change
in J�
� is �1%, comparing runs with 	�=10−7 and 10−8. In
addition, we have calculated the forth-back error58 to vali-
date that this is a sufficiently small discarded weight for our
purposes, in which the oscillations cause the dominant fluc-
tuation around the current’s average �see Appendix A�.

We have further checked our tDMRG with the chosen
parameters against exact diagonalization for the noninteract-
ing case to make sure that the so-called run-away time58 is
not the limiting factor in our case.
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