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I. INTRODUCTION

The accurate calculation of time-dependent quantum ob-
servables in correlated electron systems is crucial to achieve
further progress in this field of research, where the vast major-
ity of the computational efforts in the past have mainly focused
on time-independent quantities. In transition metal oxides and
nanostructures, time evolution is at the core of the study
of a broad array of physical phenomena such as electronic
transport, optical excitations, and nonequilibrium dynamics in
general. Accurate studies of time-dependent properties will
advance the fields of spintronics, low-dimensional correlated
systems, and possibly quantum computing as well. For a list of
recent efforts on these topics by our group and a concomitant
set of references, see [1–5] and references therein.

The purpose of this paper is to present an explicit im-
plementation of the time evolution within the density-matrix
renormalization-group (DMRG) method [6,7]. Knowledge of
the widely discussed DMRG algorithm to compute static
observables is here assumed. Readers not familiar with the
method are referred to published reviews [8–11] and to
the original publications [6,7] for further information. Our
main focus here is to provide a detailed description of the
implementation of the time-step-targeting [12] algorithm and
the discussion of a few applications. We also provide full
open-source codes and additional documentation to use those
codes [13].

The present work builds upon considerable previous efforts
by other groups. In particular, we mainly follow Manmana
et al. [14]. The time-step targeting procedure was also reviewed
in Ref. [15]. Since it would not be practical to describe in a
short paragraph the considerable progress achieved in this field
of research in recent years, the interested reader is encouraged
to consult the aforementioned reviews along with, for example,
Ref. [16] for a historical account of the development of the
methods used in the present publication.

Since our aim is to discuss a generic method applicable to
any Hamiltonian and lattice geometry, here we do not discuss

or implement the Suzuki-Trotter method [17,18] but focus
instead only on the Krylov method [19] for the time evolution,
as described in Ref. [14]. Because its implementation can be
isolated from the rest of the computer code, the Krylov method
can be applied in a generic way to most models and geometries
without changes, which is not the case for other methods,
such as the Suzuki-Trotter method. The readers interested in
the Suzuki-Trotter method should consult the Algorithms and
Libraries for Physics Simulations (ALPS) project [20], where
the time-evolving block decimation is implemented [17].

Our goal is to compute observables of the form

〈φ1|eiH tA0,π(0)A1,π(1) . . . Aa−1,π(a−1)e
−iH t |φ2〉, (1)

where |φ1〉 and |φ2〉 denote generic quantum many-body states.
This category of observables is sufficiently broad to encompass
most time-dependent correlations, as represented by a number
a of local operators A0,π(0) A1,π(1) . . . Aa−1,π(a−1) acting on
sites π (0), π (1), π (a − 1) of a finite lattice, where π (i) denotes
the lattice site on which the operator Ai,π(i) acts and the extra
index i indicates that the operator can be different at each site.

An immediate application of this formalism and code is
the study of the evolution of a system that is brought out of
equilibrium by a sudden excitation. This sudden excitation can
be simulated by the state of the system given by the vectors
|φ1〉 and |φ2〉. Depending on the problem, sometimes it is
more convenient to assume that the states remain unchanged
but that it is the Hamiltonian H (t) that changes with time.
Another application entails the computation of time-dependent
properties of systems in equilibrium, such as the Green’s
function Gij (t).

The organization of this paper is the following. Section II
explains in detail the Krylov method for time evolution within
the DMRG algorithm, focusing on its implementation. Section
III A applies the method to the case of one-site excitations,
showing a simple picture of the accuracy of the method.
Section III B extends to two-leg ladder geometries the results
obtained using tight-binding chains, employing holon-doublon
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excitations for the specific study. Performance issues are
studied in Sec. IV, while Sec. V summarizes our results. The
first appendix contains derivations of exact results used in
the paper. The last appendix explains briefly the use of the
code and points to its documentation.

II. METHOD AND IMPLEMENTATION

A. Lanczos computation of the unitary evolution

To carry out the previously described program1 of comput-
ing observables of the type given by Eq. (1), the first goal is to
calculate |φ(t)〉 ≡ exp(−iH t)|φ〉. The Lanczos technique [21]
provides a method to tridiagonalize H into V †T V , where T

is tridiagonal and V is the matrix of Lanczos vectors. If the
number of those Lanczos vectors is nl and the Hilbert space
for |φ〉 has size n, then T is a square matrix of size nl × nl and
V is, in general, a rectangular matrix of size nl × n.

V †T V cannot be used everywhere as a substitution for
H without inducing large errors, but if we start the Lanczos
procedure [22] with the vector |φ〉 (instead of using a random
vector as is most frequently done), then we can use that
substitution accurately in the multiplication H |φ〉. However,
this is not enough here, because we need to compute the
exponential of H . For this purpose, it has been shown [23–25]
that |φ(t)〉 ≈ V † exp(iT t)V |φ〉 with an accuracy that increases
as time t decreases for fixed nl . We will assume that we have
taken t small enough such that we can regard the expression
above to have the accuracy of the Lanczos technique, which
is usually high. In other words, if t is small enough, we
will assume that using V † exp(iT t)V |φ〉 as a replacement
for exp(−iH t)|φ〉 is not worse than using V †T V |φ〉 as a
replacement for H |φ〉. This will be enough for our purposes,
but for details on the scaling and bounds of the errors made in
each case as a function of t and nl , see, for example, Refs. [23]
and [24].

Since we started the Lanczos recursive procedure with
the vector |φ〉, then

∑
j Vj ′,j |φ〉j ∝ δj ′,0. Finally, we need to

diagonalize T = S†DS into a nl × nl diagonal matrix D with
diagonal elements dl′ . This last step is not computationally
expensive, since T is a nl × nl matrix, as was noted before.

Denoting by |φ〉j the j component of the vector |φ〉, we
arrive at

|φ(t)〉i =
∑
k,l,j

V
†
i,kS

†
k,le

−idl t Sl,0V0,j |φ〉j , (2)

for small times t , where the equal sign should be understood
to be valid within the accuracy of the Lanczos technique [25].
How to deal with larger times t will be explained in Sec. II C.

B. Targeting states with the DMRG algorithm

It appears that now we could use Eq. (2) to compute |φ1(t)〉
from some vector |φ1〉 and likewise |φ2(t)〉 starting from
some vector |φ2〉. Then we would just apply the operators
A0,π(0) A1,π(1) . . . Aa−1,π(a−1) to those states within a DMRG

1This section is inspired by handwritten notes of Schollwöck from
his talk at IPAM, University of California at Los Angeles, found at
[https://www.ipam.ucla.edu/publications/qs2009/qs2009 8384.pdf].

procedure to achieve our aim of computing Eq. (1). However,
the DMRG algorithm is not immediately applicable to arbitrary
states, such as |φ1(t)〉, and was originally developed to compute
the ground state of the Hamiltonian instead.

This difficulty has been successfully overcome (see [9] and
references therein) by redefining the reduced density matrix of
the left block L as

ρL
α,α′ =

∑
β∈R

∑
l

ωl	
†(l)α,β	(l)α′,β , (3)

where α and α′ label states in the left block L, β label those of
the right block R, and {	(l)}l is a set of as of yet unspecified
states of the superblock L ∪ R. The states 	(l) are said to be
targeted by the DMRG algorithm. Because of their inclusion
in the reduced density matrix, these states will be obtained with
a precision that scales similarly to the precision of the ground
state in the static formulation of the DMRG. The relevance
of the weights ωl appearing in Eq. (3) will be discussed in
Sec. II C.

Which are the states 	(l) that need to be included in Eq. (3)
to compute Eq. (1)? |φ1(t)〉 and |φ2(t)〉 are certainly needed.
Since observables that include the ground state are ubiquitous,
the ground state of the Hamiltonian needs to be targeted as
well in most cases, but additional states need to be included in
order to evolve to larger times, as we will now explain.

Our implementation follows the time-step-targeting proce-
dure of Ref. [15]. We now introduce a small time τ such that,
for all t � τ , Eq. (2) is accurate in the sense defined in, for
example, Ref. [23]. We consider a set of nv times {tx}x , x =
0,1, . . . ,nv − 1, such that tx < tx+1, t0 = 0, and tnv−1 = τ . For
simplicity, we assume from now on that |φ1〉 = |φ2〉 ≡ |φ〉 in
Eq. (1). The state |φ〉 is defined by the particular physics
problem under investigation, and we will consider particular
examples in Sec. III. States |φ(tx)〉 for each 0 � x < nv can be
obtained accurately from |φ〉 by using Eq. (2) since tx � τ . To
compute Eq. (1) for all t � τ , we target the nv states |φ(tx)〉
and the ground state |ψ〉 as well.

At this point, it is instructive to consider a concrete class of
states |φ〉. In a large class of problems, these states are related
to the ground state |ψ〉 of the Hamiltonian by

|φ〉 = Bb−1,π ′(b−1) . . . B1,π ′(1)B0,π ′(0)|ψ〉, (4)

for b local operators B0,π ′(0), B1,π ′(1), . . ., Bb−1,π ′(b−1) acting on
sites π ′(0),π ′(1), . . . ,π ′(b − 1) of the superblock, where π ′(i)
denotes the lattice site on which the operator Bi,π ′(i) acts, as
explained below. The extra index i indicates that the operators
B can be different on different sites. Physical examples of the
operators B will be given in Sec. III.

The sites π ′(0), π ′(1), . . . , π ′(b − 1) in Eq. (4) [as well as
sites π (0), π (1), . . ., π (a − 1) in Eq. (1)] will be considered
ordered in the way in which they appear as central sites [9]
for the DMRG finite algorithm, as illustrated in Fig. 1. At a
given stage of the computational procedure, if the central site
of the DMRG algorithm is π ′(0), then |φpartial

0 〉 ≡ B0,π ′(0)|ψ〉
can be obtained. Next, we proceed to the following site, and so
on, until we reach site π ′(1) and apply B1,π ′(1), i.e., |φpartial

1,0 〉 ≡
B1,π ′(1)|φpartial

0 〉, eventually reaching site π ′(b − 1) to complete
the computation of |φ〉, given by Eq. (4). Since in cases of
physical interest the operators B are either bosons or fermions,
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FIG. 1. Example of a state |φ〉 given by Eq. (4). The order in
which the on-site operators are applied will depend on the order in
which the sites appear as “central sites.” In the example above, b = 3,
and the operators are acting on sites 3, 4, and 7. In the sweeping
procedure shown, the order will be π ′(0) = 4,π ′(1) = 7,π ′(2) = 3,
that is, |φ〉 = B3B7B4|ψ〉.

a reordering is always possible due to their commutativity or
anticommutativity, yielding at most a minus sign.

As the DMRG algorithm sweeps the entire lattice, the
central sites change, leading to modified Hilbert spaces.
Therefore, a procedure is required to “transport” the states
|φ〉 from one space to another. It is known [14] that the
transformation needed to “transport” these states is the so-
called wave-function transformation, proposed by White [26]
first in the context of providing a guess for the initial Lanczos
vector to speed up the algorithm but later found to be applicable
to other subalgorithms.

After the state |φ〉 in Eq. (4) is computed, the DMRG
algorithm operates for a few extra steps to better converge
all states |ψ(tx)〉, ∀tx � τ . These states and all DMRG
transformations can be saved to disk and later used to compute
the observables in Eq. (1).

C. Evolution to arbitrary times

What happens to Eq. (1) for larger times, that is, for
times t > τ? Noting that |φ(τ + τ )〉 = exp(iHτ )|φ(τ )〉, we
can apply Eq. (2) to |φ(τ )〉, which in general reads [14]

|φ(t + τ )〉i =
∑

k,k′,l,l′,j

V
†
i,kS

†
k,le

−idlτ Sl,0V0,j |φ(t)〉j , (5)

where again |φ(t)〉j denotes the j th component of the vector
|φ(t)〉. Then, we proceed by targeting the states {|φ(tx + τ )〉}x
for some time until they are converged. By applying this
procedure recursively, we reach arbitrary times t as we sweep
the finite lattice back and forth and target {|φ(tx + t)〉}x in the
general case.

The speed of time advancement in the algorithm is
controlled by two opposing computational constraints. If we
advance times too fast by applying Eq. (5) too often, then
convergence might not be achieved or we might not have
had the chance to visit all sites π (0), π (1), . . . , π (a − 1)
to compute Eq. (1). Conversely, advancing too slowly would
increase computational cost but produce no additional data.
Remember that when not advancing in time, states |φ(t + tx)〉x
are wave function transformed, as explained in the previous
section.

We now explain the choice of the weights [15] that appear in
Eq. (3). Assume n to be the total number of states to be targeted,
including the ground state. To give them more prominence, we
have chosen a weight of 2� for the ground state and for the

	(l) vectors at the beginning and end of the τ interval. We have
chosen a weight of � for the rest. Then 2� × 3 + �(n − 3) =
1 implies � = 1/(n + 3). The algorithm does not appear much
dependent on the choice of weights. However, irrespective of
what the choice actually is, all mentioned states must have
nonzero weights to avoid loss of precision for one or more
states.

D. Overview of the implementation

The DMRG++ code was introduced in Refs. [27] and [28].
The extension of the code to handle the time evolution and
computation of observables of the type represented by Eq. (1)
was carried out with minimal refactoring. A targeting interface
was introduced, with two concrete classes, GroundStateTar-
getting, and TimeStepTargetting. The first handles the usual
case and is used even in the presence of time evolution during
the so-called infinite DMRG algorithm and during the finite
algorithm before encountering the first site π ′(0) in Eq. (4).

A call to target.evolve(...) handles (i) the computation
of the vectors {|φ(t + tx)〉}x as needed and (ii) their time
evolution or, depending on the stage of the algorithm, their
wave-function transformation. When the target object belongs
to the TimeStepTargetting class, the actual implementation of
these tasks is performed by the member function evolve(...).
When the target object is of class GroundStateTargetting,
the evolve(...) function is empty. The call to this function
is always done immediately after obtaining the ground state
|ψ〉 for that particular step of the DMRG algorithm. File
TimeStepTargetting.h is documented in place using literate
programming [29]. Further details about how to run the
DMRG++ code and how to specify its input file are given
in Ref. A.

III. EXAMPLES

A. One-site excitations

To test the accuracy of the time-dependent DMRG ap-
proach explained in the previous section, we consider first
the following problem. Consider the tight-binding model
H0 = ∑

i,j,σ tij c
†
iσ cjσ , with tij a symmetric matrix, with the

observable [31] we wish to calculate being

Xij↑(t) = 〈ψ |c†i↑eiH0t nj↑e−iH0t ci↑|ψ〉, (6)

where |ψ〉 is the ground state of H0. (We keep the usual
notation tij for the matrix of hopping integrals in the context
of a tight binding model [32], even though t is also used to
denote time here.)

This is equivalent to taking b = 1, B = c↑, and π ′(0) = i

in Eq. (4) and a = 1, π (0) = j , and A = n↑ in Eq. (1). The
physical interpretation for Xij↑(t) is then clear: It provides
the time-dependent expectation value of the charge density
〈nj↑〉(t) at site j over a state that, at time t = 0, is defined
by creating a “hole-like” excitation in state |ψ〉 at site i.
We assume that site i has been specified and is kept fixed
throughout this discussion.

Xij (t) can be expressed in terms of the eigenvectors and
eigenvalues of tij . For a half-filled lattice, we have Xij (t) =
RiRj − |Tij (t)|2, where Ri and Tij are given in Appendix.
Then, Xij (t) can be calculated numerically and compared to
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FIG. 2. (Color online) Observable Xij↑(t), Eq. (6), for Hamilto-
nian H0, with i = 25 and j as indicated, on two geometries: (a) a
25 × 2 ladder and (b) a 50-site chain. Circles and squares represent
DMRG results, and solid lines show exact results. Inset: Labeling
of sites on a two-leg ladder. The one-site excitation (creation of a
“hole”) was applied on site i = 25. Chain sites are labeled from left
to right, starting at 0.

DMRG results for this model on a 50-site chain and on a
25 × 2 ladder; see Fig. 2.

On the chain, the number of states kept for the DMRG
algorithm was set to m = 200, which was found to give good
accuracy for the ground-state energy. On the ladder, m = 400
was used, which is a typical [33] m value to achieve good
accuracy for the ground-state energy and static properties.
For instance, in both cases, DMRG gives Xii(t = 0) = 0 and
Xij (t = 0) = 1/4 for i �= j , as expected. As shown in Fig. 2,
the use of these values of m yields an accurate time evolution.

A full lattice sweep is done before advancing in time, which
equals n/2 − 1 DMRG iterations, with n the total number of
sites. As discussed in Refs. [14] and [15], care must be taken
in choosing the time step and the number of retained states m

during time evolution in order to avoid the “runaway” of the
results after a certain “runaway time” tR . This is especially
critical for the ladder: We find that m = 400 and a time step
of 0.1 results in tR > 4.

B. Holon-doublon

Currently there is considerable interest in studying the
feasibility of a new class of materials—the Mott insulators—
for their possible use in photovoltaic devices and oxide
electronics in general. The crucial question under study is
whether charge excitations in the Mott insulator will be able
to properly transfer the charge into the metallic contacts,
thus establishing a steady-state photocurrent. Answering this
question will require computation of the out-of-equilibrium
dynamics and the time evolution of the excitonic excitations
produced by the absorption of light by the material.

The electron and hole created by light absorption are
modeled by the state [34]

|φ〉 ≡ ciσ (1 − niσ̄ )c†jσ ′njσ̄ ′ |ψ〉, (7)

where |ψ〉 is the ground state, σ and σ ′ are spin indices, and
σ̄ = 1 − σ denotes the spin opposite to σ . A sum over σ and

σ ′ is assumed in the equation above. This is equivalent to
taking b = 2, B0 = c†σ nσ̄ ′ , B1 = cσ (1 − nσ̄ ), π ′(0) = j , and
π ′(1) = i in Eq. (4). We assume that the sites i and j of the
lattice have been specified and will remain fixed throughout
this discussion.

To model a Mott insulator, we consider the Hubbard
Hamiltonian [35–37]

Ĥ = Ĥ0 + U
∑

i

n̂i↑n̂i↓, (8)

where the notation is as in Ref. [34], and we drop the hat from
the operators from now on. The hopping matrix t corresponds
either to an open chain or a two-leg ladder in the studies below.

1. Density

The time-dependent density at site p of state Eq. (7) is

Oj,i,p,↑(t) = 〈φ|eiH tnp↑e−iH t |φ〉
〈φ|φ〉 , (9)

which amounts to taking a = 1, A = n↑, and π (0) = p in
Eq. (1). Consider Oj,i,p(t) = ∑

σ Oj,i,p,σ (t). In the case of
U = 0 and half-filling we have

Oj,i,p(0) ≡ Oj,i,p,↑(0) + Oj,i,p,↓(0) =
⎧⎨
⎩

0 if p = i

2 if p = j

1 otherwise.

(10)

The observable we test in this section is 〈�e|np|�e〉, which
has a similar physical interpretation as Xij (t) [Eq. (6)] in the
holon-doublon case. Results for U = 0 and U = 10 are shown
in Fig. 3. At t = 0, the values of 〈�e|np|�e〉 given by Eq. (10)
hold true in the U �= 0 case at half-filling. The time evolution
for interacting and noninteracting cases are quite distinct,
however, as in the case of the chain (see, e.g., Ref. [38]).

Readers might want to know why we emphasize the
noninteracting U = 0 case. One obvious advantage of the
U = 0 case is that we can test the Krylov method, and
indirectly the accuracy of the DMRG, against exact results.
In the case of the ladder geometry, the U = 0 benchmark is
particularly useful for large system sizes as it guides the choice
of time-evolution parameters in the DMRG runs: for a 50-site
ladder, for instance, using m = 400 and a time step equal to
0.1, small deviations from the exact calculations can appear
for t > 3.5 on certain sites. In addition, the U term, at least
when on site, is not a major source of efficiency problems for
the DMRG algorithm.

To test our results for U �= 0, we have compared them to the
Suzuki-Trotter method (not shown). We have also computed
the small time expansion, and this is shown in Fig. 4.

2. Double occupation

The double occupation of state Eq. (7) is [34]

Nd (j,i,p,t) ≡ 〈φ|eiH tnp↑np↓e−iH t |φ〉
〈φ|φ〉 (11)

and amounts to taking a = 1, A = n↑n↓, and π (0) = p in
Eq. (1).

Summarizing the operator equations obtained in
Sec. III B 1, ni↑Aij = 0, and n̄j↑Aij = 0, where Aij = ciσ
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FIG. 3. (Color online) (a), (b) Density at site p of the holon-
doublon state Eq. (7) as a function of time for (a) U = 0 and (b)
U = 10. A 2 × 4 ladder with tx = 1 and ty = 0.5 was used, containing
four up and four down electrons. The holon-doublon operator was
applied at i = 2, j = 4. (c), (d) Same as for panels (a) and (b) but now
on a 2 × 25 ladder with 50 electrons. In this case, the holon-doublon
operator was applied at i = 25, j = 24. In the vertical axes labels,
hdij (t) denotes the state obtained by acting with a holon-doublon
operator at sites i and j over the ground state and evolving that state
to time t .

(1 − niσ̄ )c†jσ ′njσ̄ ′ , n̄ = 1 − n, and these equations also
hold if we replace ↑ by ↓. Then Nd (j,i,i,t = 0)〈φ|φ〉 =
〈A†

ij ni↑ni↓Aij 〉 = 0, and

Nd (j,i,j,t = 0)〈φ|φ〉 = 〈A†
ij nj↑nj↓Aij 〉

= 〈A†
ij nj↑(1 − n̄j↓)Aij 〉

= 〈A†
ij nj↑Aij 〉 ≡ Oj,i,j,↑〈φ|φ〉.

DMRG results for U = 0 and U = 10 are shown in Fig. 5.
Also shown are exact results for U = 0. At t = 0, the double
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FIG. 4. (Color online) Comparison of Oj,i,p(t) computed with
DMRG (circles and squares) and with a t → 0 expansion. For
the latter Oj,i,p(t) = Oj,i,p(0) + aj,i,pt2 + O(t4), where aj,i,p ≡
〈φ|HnpH − H 2np|φ〉. Same parameters as in Fig. 3(b).
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FIG. 5. (Color online) (a), (b) Double occupation at site p of the
holon-doublon state Eq. (7) as a function of time for (a) U = 0 and (b)
U = 10. A 2 × 4 ladder with tx = 1 and ty = 0.5 was used, containing
four up and four down electrons. The holon-doublon operator was ap-
plied at i = 2, j = 4. (c), (d) Same as in panels (a) and (b) but now on a
2 × 25 ladder with 50 electrons. In this case, the holon-doublon oper-
ator was applied at i = 25, j = 24. In the vertical axes labels, hdij (t)
denotes the state obtained by acting with a holon-doublon operator at
sites i and j over the ground state and evolving that state to time t .

occupation at the doublon (p = j ) and holon (p = i) sites
are, respectively, Nd (j,i,p = j,t = 0) = 1 and Nd (j,i,p =
i,t = 0) = 0 for both interacting and noninteracting cases. At
the doublon site, the double occupation has a characteristic
oscillating decay caused by the dynamics of the holon-doublon
pair within the system, also observed for the chain case [38].

IV. COMPUTATIONAL EFFICIENCY
AND CONCURRENCY

As in the static DMRG algorithm, the most computationally
intensive task of the time-step targeting DMRG algorithm
is the computation of Hamiltonian connections between the
system and environment blocks. The difference is that now the
lattice needs to be swept painstakingly to advance to larger
times. The scaling, however, is linear with the number of finite
sweeps, as long as the truncation m remains constant.

Sometimes it is better to stipulate the discarded weight
instead of keeping m constant. This can easily be achieved
from the input file, as described in Ref. [30].

This expensive task of building Hamiltonian connections
between system and environment blocks can be parallelized
[39–43]. Our implementation uses PTHREADS, a shared

056706-5



ALVAREZ, DIAS DA SILVA, PONCE, AND DAGOTTO PHYSICAL REVIEW E 84, 056706 (2011)

memory approach.2 In percentage, the computation speed-up
is similar to the static DMRG case, and a discussion of the
strong scaling can be found in Ref. [28]. In terms of wall-clock
time, the speed-up is larger due to the time-step-targeting
DMRG algorithm taking more time than the static version.

The computation of target states could be parallelized
easily, but whether serial or parallel, it is too fast to have
substantial impact on the CPU times of production runs.

The measurement of observables is a different matter.
DMRG++ computes observables postprocessing; that is, the
main code saves all DMRG transformations, permutations,
and quantum states to disk and a second observer code reads
the data from disk and computes observables as needed.
We argue that postprocessing is more advantageous than in
situ processing, whether for the static or the time-dependent
DMRG algorithm.

First, a single run of the main code enables computation of
all observables. If, instead, one needed to make a decision
on which observables to compute when running the main
code, one would risk computing too much or too little. In
the former case, computational resources and wall-clock time
would be wasted. In the latter case, the main run would
have to be repeated, leading to vast redundancies because the
observations are not computationally intensive compared to
the main code.

Moreover, by computing observables postprocessing, we
decouple the code and enable scalable parallel compu-
tations. For example, one-point observables of the form
〈φ1(t)|Ai |φ2(t)〉 are parallelized over i, and two-point cor-
relations, such as 〈φ1(t)|AiBj |φ2(t)〉, are parallelized over j

and cached over i. If N is the number of sites of the lattice,
the parallelization scales linearly up to almost N ; the scaling
is good but not perfect due to initialization costs [44].

V. SUMMARY

This paper explained in detail the implementation of the
Krylov method for the real-time evolution within the DMRG
algorithm, using time-step targeting [14,15]. We applied the
method to a simple case of one-site excitations [31] and found
the method to be accurate. For the case of the holon-doublon
excitation, we have extended to two-leg ladders the previous
results obtained in chains. Our analysis has shown that the
method is accurate as long as the underlying DMRG algorithm
is accurate. Since Mott insulators are under study for its
possible applicability to solar cells, the present results pave

2PTHREADS or POSIX THREADS is a standardized C language threads
programming interface, specified by the IEEE POSIX standard.

the way for their continued study, now on more complex (but
still quasi-one-dimensional) geometries, such as ladders.

We described computational tricks that can help decrease
the run time. For example, we mentioned that shared memory
parallelization with a few CPU cores can cut times by a
factor of 2 or more. Parallelization works in the same way
for time-dependent DMRG as it does for static DMRG, but
it helps more in the former case, due to runs taking longer.
We also argued in favor of the postprocessing of observables
to speed up production runs and increase computational
efficiency.

Our implementation, DMRG++, is free and open source.
It emphasizes generic programming using C++ templates, a
friendly user interface, and as few software dependencies as
possible. DMRG++ makes writing new models and geometries
easy and fast by using a generic DMRG engine.
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APPENDIX: ONE-SITE EXCITATION IN THE
NONINTERACTING CASE

Let U be the matrix that diagonalizes H0, so that c
†
i↑ =∑

λ U ∗
i,λ,↑uλ,↑ and uλ,↑ are the diagonal operators. Let Eλ be

the eigenvalues of H0.
For the rest of this appendix, we omit ↑. After some algebra

and omitting the sums over duplicated indices, we obtain

Xij (t) = U ∗
i,λU

∗
j,ξUj,ξ ′Ui,λ′ 〈u†

λeiH0t u
†
ξuξ e−iH0t uλ′ 〉. (A1)

The ground state of H0 is made up of N↑ filled levels,
up to the Fermi energy, and particle-hole excitations are
eigenstates of H (or, conversely, the excited states of H0

are particle-hole excitations). Then, the λ′th level of |φ〉
is occupied, and uλ′ |φ〉 is an eigenstate of H with a hole
at λ′. By applying this reasoning multiple times, the final
result is Xij (t) = RiRj − |Tij (t)|2, where Ri = ∑′

λ |Ui,λ|2,
and Tij (t) = ∑′

λ U ∗
i,λUj,λ exp(−iEλt), where the prime over

the summation means sum only over occupied states λ.
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