Tarefa 19: Haldane model

$$
\begin{aligned}
& \frac{\mathcal{H}_{\mathbf{q}}}{N}=\left(\begin{array}{c}
M+2 t_{2} f(\mathbf{q}, \phi) \\
t_{1} \gamma_{\mathbf{q}}^{*}
\end{array} \quad t_{1} \gamma_{\mathbf{q}}\right. \\
& \gamma_{\mathbf{q}}=1+e^{i \mathbf{q} \cdot \mathbf{a}_{2}}+e^{i \mathbf{q} \cdot\left(\mathbf{a}_{2}-\mathbf{a}_{1}\right)} \\
& \left.f(\mathbf{q}, \phi)=\begin{array}{c}
\cos \left(\mathbf{q} \cdot \mathbf{a}_{1}+\phi\right)+\cos \left(\mathbf{q} \cdot \mathbf{a}_{2}-\phi\right)+ \\
\cos \left(\mathbf{q} \cdot\left(\mathbf{a}_{2}-\mathbf{a}_{1}\right)+\phi\right)
\end{array}\right) \\
& \text { Consider: t1=1, ф=//2, and } \mathbf{a}_{1} \text { and } \mathbf{a}_{2} \text { as in the left. } \\
& \text { 1) Calculate the Hamiltonian matrix for the Brillouin zone } \\
& \text { vertices } \mathbf{q}=\mathrm{K} \text { and } \mathbf{q}=\mathrm{K} \text {. (remember Lista 03!) } \\
& \text { 2) Show that the gap vanishes for } \\
& \quad t_{2}= \pm M /(3 \sqrt{3})
\end{aligned}
$$

but not in K and K^{\prime} at the same time!

