
Adiabatic phase.

Consider the Hamiltonian:

The time evolution is given by: 

Notice that              IS NOT EQUAL to                    !

In fact, they are related by a PHASE FACTOR:

k 

En(k)

k(0) k(t) 

Now, suppose that k changes slowly with time : 



Adiabatic phase.

Using the time-dependent Schrodinger’s equation:

k 

En(k)

k(0) k(t) 

We have:

1)

2)

Finally:



Berry phase.

Sir Michael Berry

The first term is a GEOMETRICAL PHASE FACTOR

Such that, if k(t)=k(0) (closed path):

k 

En(k)

k(0)= k(t) 

BERRY PHASE

We can write as 

We define the “BERRY VECTOR POTENTIAL”:

“BERRY CURVATURE”:

or “Berry connection”:



How to calculate Ω in a gauge-invariant way? 

Identity (m ≠n):

Vector identity (m =n):1)

2)

It is much easier to apply the             operator in H rather than in the state!



Example: two-band system (Dirac-Weyl).

Consider the Hamiltonian of the form:

Eigenvalues (Tarefa 19):

Eigenvectors (up to a phase) (Tarefa 19):



Example: two-band system (Dirac-Weyl).

Berry curvatures:

Gradient of the Hamiltonian:

After a looong calculation (Lista 5): (NOT gauge-dependent!) (Lista 5)

A “Berry curvature monopole” irradianting at the origin (k=0):

Chern number:



Example: two-band system (Dirac-Weyl).

Berry phase:

For a closed path C, the Berry phase is the 

Berry connection  flux through the open surface S :

Using :

We find that the Berry phase is half of the solid angle enclosed by C:



Tarefa 19: two-band system (Dirac-Weyl).

Consider the Hamiltonian of the form:

1) Calculate the two eigenvalues of H(k)

2) Calculate the eigenvectors (up to a phase) in terms of the angles θ and φ:

3) Calculate the Berry curvatures for each eigenstate:



Velocity and Berry curvature in the QHE

Electric potential and Vector potential.

e

Electromagnetic force

Thus:

Velocity:

Hamiltonian:

In the absence of other charges:



Tarefa 20: identity for the velocity

Using:

Show that:

3)

1)

2)

Tip: Do it by components so you don’t get confused!! 



Velocity and Berry curvature in the QHE

From the previous result, it follows(*):

(*) Should be on Lista 5!

Remember the definition of the Berry curvature:

and using:

we get



Hall Conductance and Chern number

Current density(*):

(*) Quantum version of the usual:

Using:

we might calculate the conductance:

If we have a gap and N filled levels:

k 

En(k)



Hall Conductance and Chern number

The conductance can then be calculated:

k 

En(k)

The integral will be carried out in the 1st BZ, which is a 

torus for the Berry curvature:

Thus the integral will be 2π (Chern number) and the sum will give the number of filled bands ν :



TKNN invariant: 1982
The Hall conductivity is proportional to a Chern number (Berry-phase-like)

- System is periodic (BZ is a torus in k-space)
- There is an uniform magnetic field in the system.
- Fermi energy lies in a gap with NF filled bands.

ν = 0,1,2,... : filling factor. 
Depends only on the 
topology of the BZ states.

Thouless, Kohmoto, Nightingale, den Nijs, Phys. Rev. Lett. 49, 405 (1982)
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TKNN invariant: 1982
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Thouless, Kohmoto, Nightingale, den Nijs, Phys. Rev. Lett. 49, 405 (1982)

ν = 0,1,2,... : filling factor. 
Depends only on the 
topology of the BZ states.
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The Hall conductivity is proportional to a Chern number (Berry-phase-like)


