
Tarefa 21: Haldane model

$\frac{\mathbf{a}}{\mathbf{b}} = \left(\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right)$	M +	$t_{1} 2t_{2} f(\mathbf{q}, \phi)$ $t_{1} \gamma_{\mathbf{q}}^{*}$	-M +	$t_1 \gamma_{\mathbf{q}} \\ 2t_2 f(\mathbf{q}, -\phi)$	
$\gamma_{\mathbf{q}} =$	1 +	$e^{i\mathbf{q}\cdot\mathbf{a}_2} + e^{i\mathbf{q}\cdot\mathbf{a}_2}$	$_{2}i\mathbf{q}\cdot(\mathbf{a}_{2}-\mathbf{b}_{2})$	$\mathbf{a}_1)$	
$f(\mathbf{q},\phi)$	=	$\cos\left(\mathbf{q}\cdot\mathbf{a}_{1}+\cos\left(\mathbf{q}\cdot\left(\mathbf{a}_{2}-\mathbf{a}_{2}\right)\right)\right)$			-

Consider: t1=1 , $\phi = \pi/2$, and \mathbf{a}_1 and \mathbf{a}_2 as in the left.

 Calculate the Hamiltonian matrix for the Brillouin zone vertices q=K and q=K'. (remember Lista 03!)

2) Show that the gap vanishes for

 $t_2 = \pm M/(3\sqrt{3})$

but not in K and K' at the same time!