Tarefa 22: BHZ model

$$\mathcal{H}(k_x, k_y) = \begin{pmatrix} \epsilon(k) + \mathcal{M}(k) & Ak_{-} & 0 & 0\\ Ak_{+} & \epsilon(k) - \mathcal{M}(k) & 0 & 0\\ 0 & 0 & \epsilon(k) + \mathcal{M}(k) & -Ak_{+}\\ 0 & 0 & -Ak_{-} & \epsilon(k) - \mathcal{M}(k) \end{pmatrix}$$

$$\begin{cases} \epsilon(k) &= C - Dk^2 \\ \mathcal{M}(k) &= M - Bk^2 \\ k_{\pm} &= k_x \pm ik_y \end{cases}$$

	\ /	\ \ /	\ /	\ \ /	M(eV)	
58	-3.62	-18.0	-0.0180	-0.594	0.00922	d <d<sub>c</d<sub>
70	-3.42	-16.9	-0.0263	0.514	-0.00686	d>d _c

Table 1: Parameters for Hg_{0.32}Cd_{0.68}Te/HgTe quantum wells.

- 1) Show that 2 of the 4 bands are always degenerate independently of the parameters.
- 2) Calculate the value of M such that the energy gap *vanishes* at $\mathbf{k}=(0,0)$.