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Lecture 2: Outline

� Kondo effect: Intro.
� Kondo’s original idea: Perturbation theory.
� Numerical Renormalization Group (NRG).
� s-d and Anderson models.
� NRG results for the local density of states.



Coulomb Blockade in Quantum Dots

Coulomb Blockade in Quantum Dots: “dot spectroscopy”

Y. Alhassid Rev. Mod. Phys. 72 895 (2000).



“Coulomb Diamonds” (Stability Diagram)

Coulomb Blockade in Quantum Dots

L. P. Kouwenhoven et al. Science 278 1788 (1996).

eVsd

eVgate



“Carbon nanotube Quantum dots”.

� Carbon nanotubes depsited on top 
of mettalic electrodes.

� Quantum dots defined within the 
carbon nanotubes.

� More structure than in quantum 
dots: “shell structure” due to orbital
degeneracy.

Makarovski, Zhukov, Liu, Filkenstein PRB 75 241407R (2007).

Gleb Filkenstein’s webpage: http://www.phy.duke.edu/~gleb/



Lecture 2 (coming up…)



“More is Different”
“ The behavior of large and complex 

aggregates of elementary particles, it turns 
out, is not to be understood in terms of simple 
extrapolation of the properties of a few 
particles. 

Instead, at each level of complexity entirely 
new properties appear and the understanding 
of the new behaviors requires research which 
I think is as fundamental in its nature as any 
other.“

Phillip W. Anderson, “More is Different”, 
Science 177 393 (1972)



Can you make “atoms” out of atoms?
Ga As

Energy

GaAs crystal

Atomic Energy levels
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Band structure

Many Atoms!

Many Atoms!

M. Rohlfing et al. PRB 48 17791 (1993)
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From atoms to metals, plus atoms…

Many Atoms!

Metal (non magnetic)

?

Conduction band

filled

EF

E

ATOM

E

Magnetic “impurities”
(e.g., transition atoms,
with unfilled d-levels, 
f-levels (REarths…))

(few)

Is the resulting compound still a metal ?



Kondo effect

� Magnetic impurity in a 
metal.
� 30’s - Resisivity 

measurements: 
minimum in ρρρρ(T); 
Tmin depends on cimp.

� 60’s - Correlation 
between the existence of 
a Curie-Weiss 
component in the 
susceptibility (magnetic 
moment) and resistance 
minimum . 

µFe/µB

Top: A.M. Clogston et al Phys. Rev. 125 541(1962).
Bottom: M.P. Sarachik et al Phys. Rev. 135 A1041 (1964).

ρ/ρ4.2K

T (oK)

Mo.9Nb.1

Mo.8Nb.2

Mo.7Nb.3

1% Fe
Mo.2Nb.8



Kondo effect M.P. Sarachik et al Phys. Rev. 135 A1041 (1964).

ρ/ρ4.2K

T (oK)

Mo.9Nb.1

Mo.8Nb.2

Mo.7Nb.3

1% Fe
Mo.2Nb.8

ξξK K ~ v~ vFF/k/kBBTTKK

Characteristic energy scale: the 
Kondo temperature TK

Resistivity decreases with 
decreasing T (usual)

Resistivity increases with 
decreasing T (Kondo effect)ρ(T)



Kondo problem: s-d Hamiltonian
� Kondo problem: s-wave coupling with spin 

impurity (s-d model):

Metal (non magnetic, s-band)

Conduction band

filled

EF

E

Magnetic impurity (unfilled d-level)



Kondo’s explanation for Tmin (1964)

� Many-body effect: virtual bound 
state near the Fermi energy.

� AFM coupling (J>0)→ “spin-flip” 
scattering

� Kondo problem: s-wave coupling 
with spin impurity (s-d model ):
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Kondo’s explanation for Tmin (1964)

� Perturbation theory in J3:
� Kondo calculated the 

conductivity in the linear 
response regime
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� Only one free paramenter: 
the Kondo temperature TK
� Temperature at which the 

perturbative expansion 
diverges. 01 2~ J

B Kk T De ρ−



Kondo’s explanation for Tmin (1964)

( ) 5
tot imp imp log Bk T

R T aT c R
D

 = −  
 

� Theory diverges logarithmically for T→0 or D→∞. 
(T<TK → perturbation expasion no longer holds)

� Experiments show finite R as T→0 or D→∞. 

What is 
going on? {

D-D

ρ(ε)

ε
εF



Kondo Impurity and Lattice models

� Kondo impurity model 
suitable for diluted impurities 
in metals.

� Some rare-earth compounds 
(localized 4f or 5f shells) can 
be described as “Kondo 
lattices”.

� This includes so called 
“heavy fermion” materials 
(e.g. Cerium and Uranium-
based compounds: 
CeCu2Si2 ; UBe13 ; etc).

ξξK K ~ v~ vFF/k/kBBTTKK

Diluted case (Kondo impurity model)“Concentrated” case: Kondo Lattice (e.g., some heavy-Fermion materials)



Kondo Lattice models

� Kondo impurity model 
suitable for diluted impurities 
in metals.

� Some rare-earth compounds 
(localized 4f or 5f shells) can 
be described as “Kondo 
lattices”.

� This includes so called 
“heavy fermion” materials 
(e.g. Cerium and Uranium-
based compounds 
CeCu2Si2, UBe13).

“Concentrated” case: Kondo Lattice (e.g., some heavy-Fermion materials)



A little bit of Kondo history:

� Early ‘30s : Resistance minimum in some metals 
� Early ‘50s : theoretical work on impurities in metals 

“Virtual Bound States” (Friedel)
� 1961: Anderson model for magnetic impurities in 

metals 
� 1964: s-d model and Kondo solution (PT)
� 1970: Anderson “Poor’s man scaling”
� 1974-75: Wilson’s Numerical Renormalization Group 

(non PT)
� 1980 : Andrei and Wiegmann’s exact solution



A little bit of Kondo history:

� Early ‘30s : Resistance minimum in some metals
� Early ‘50s : theoretical work on impurities in metals 

“Virtual Bound States” (Friedel)
� 1961: Anderson model for magnetic impurities in 

metals 
� 1964: s-d model and Kondo solution (PT)
� 1970: Anderson “Poor’s man scaling”
�� 19741974--75: Wilson75: Wilson’’s Numerical Renormalization Group s Numerical Renormalization Group 

(non PT)(non PT)
� 1980 : Andrei and Wiegmann’s exact solution

Kenneth G. Wilson – Physics Nobel Prize in 1982
"for his theory for critical phenomena in connection
with phase transitions"



Kondo’s explanation for Tmin (1964)

( ) 5
tot imp imp log Bk T
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∫

� Diverges logarithmically for T→0 or D→∞.
(T<TK → perturbation expasion no longer holds)
� Experiments show finite R as T→0 or D→∞. 
� The log comes from something like:

What is 
going on? {

D-D

ρ(ε)

ε
εF

� All energy scales contribute! 



“Perturbative” Discretization of CB

∆ = (∆E)/Dε = (E-EF)/D

∆



“Perturbative” Discretization of CB

A7 > A6 > A5 > A4 > A3 > A2 > A1

Want to keep all
contributions

for D→∞?

Not a good 
approach!

∆ = (∆E)/D
log 1nA

n

∆ = − 1− ∆ 

∆ cut-off

1
max -1n

ε
−

=∆

=∆



Wilson’s CB Logarithmic Discretization

∆n=Λ-n (Λ=2)

ε = (E-EF)/D



Wilson’s CB Logarithmic Discretization

(Λ=2)

log const.nA = Λ=

∆n=Λ-n
-n

cut-off

maxno n

ε = Λ

A3 =     A2 = A1 Now you’re ok!



Kondo problem: s-d Hamiltonian
� Kondo problem: s-wave coupling with spin 

impurity (s-d model):

Metal (non magnetic, s-band)

Conduction band

filled

EF

E

Magnetic impurity (unfilled d-level)

ρρρρ(εεεε)



Kondo s-d Hamiltonian

� From continuum k to a discretized band.
� Transform Hs-d into a linear chain form (exact, as long 

as the chain is infinite):

ρ(ε)
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“New” Hamiltonian (Wilson’s RG method)

� Logarithmic CB discretization is the key to 
avoid divergences!

� Map: conduction band → Linear Chain
� Lanczos algorithm.

� Site n → new energy scale:
� DΛ-(n+1)<| εk- εF |< DΛ-n

� Iterative numerical solution 

JJ γγ11
...

γγ22 γγ33

γγnn~~ΛΛ--n/2n/2

ρ(ε)



Logarithmic Discretization.
Steps:
1. Slice the conduction 

band in intervals in a 
log scale (parameter 
Λ)

2. Continuum spectrum 
approximated by a 
single state

3. Mapping into a tight 
binding chain: sites 
correspond to different 
energy scales. ttnn~~ΛΛ--n/2n/2



Wilson’s CB Logarithmic Discretization

• Logarithmic Discretization (in space):

Λ>1

ρ(ε)



Wilson’s CB Logarithmic Discretization

• Logarithmic Discretization (in energy):
Λ>1



“New” Hamiltonian (Wilson)

� Recurrence relation (Renormalization procedure).

JJ γγ11
...

γγ22 γγ33

γγnn~~ΛΛ--n/2n/2

ρ(ε)



“New” Hamiltonian (Wilson)
� Suppose you diagonalize HN getting Ek

and |k> and you want to diagonalize HN+1
using this basis.

� First, you expand your basis:

� Then you calculate <k,a|f+N|k’,a’>, 
<k,a|fN|k’,a’>and you have the matrix 
elements for HN+1 (sounds easy, right?)

0

↑

↓

↑↓
...

k



Intrinsic Difficulty
� You ran into problems when N~5. The basis is too 

large! (grows as 2(2N+1))
� N=0; (just the impurity); 2 states (up and down)
� N=1; 8 states
� N=2; 32 states
� N=5; 2048 states
� (…) N=20; 2.199x1012 states: 

� 1 byte per state → 20 HDs just to store the basis.
� And we might go up to N=180; 1.88x10109 states. 

� Can we store this basis? 
(Hint: The number of atoms in the universe is ~ 1080)

� Cut-off the basis → lowest ~1500 or so in the next 
round (Even then, you end up having to diagonalize
a 4000x4000 matrix… ).

0

↑

↓

↑ ↓
...



Renormalization Procedure

JJ γγ11 ...
γγ22 γγ33

γγnn~~ ξ ξn n ΛΛ--n/2n/2

� Iterative numerical 
solution.

� Renormalize by Λ1/2.

� Keep low energy 
states.

...

HHNN

ξξξξξξξξNN

HHN+1N+1



Renormalization Group Transformation

� Fixed point H* : indicates 
scale invariance.

� Renormalization Group 
transformation : (Re-
scale energy by Λ1/2).

...

HHNN

ξξξξξξξξNN

HHN+1N+1

Fixed points



Spectral function calculation

At each NRG step, you define

Local Density of states: Lehmann representation.



Spectral function 
At each NRG step:



Spectral function calculation (Costi)
To get a continuos curve, 
need to broaden deltas.
Best choice: log gaussian



NRG on Anderson model: LDOS

γγnn~~ΛΛ--n/2n/2ε1

ε1+U1
tt γγ11

...
γγ22 γγ33

� Single-particle peaks 
at εd and εd+U.

� Many-body peak at 
the Fermi energy: 
Kondo resonance 
(width ~TK).

� NRG: good resolution 
at low ω (log 
discretization).

Γ Γ

εd εd+ U

~TK



Numerical Renormalization Group
What can you do? 
� Describe the physics 

at different energy 
scales for arbitrary J.

� Probe the parameter 
phase diagram.

� Crossing between the 
“free” and “screened” 
magnetic moment 
regimes.

� Energy scale of the 
transition is of order 
Tk

~Tk



Recent Developments: TD-NRG

Application: time dependent
impurity problems



Summary: NRG overview

� NRG method: designed to handle quantum 
impurity problems

� All energy scales treated on the same 
footing.

� Non-perturbative: can access transitions 
between fixed points in the parameter space

� Calculation of physical properties



Anderson Model

ed+U

ed

εεεεF

t
D

� ed: energy level 
� U: Coulomb repulsion 
� eF: Fermi energy in the 

metal
� t: Hybridization
� D: bandwidth

� ed: position of the level (Vg)
� U: Charging energy
� eF: Fermi energy in the 

leads
� t: dot-lead tunneling
� D: bandwidth

“Quantum dot language”

with



Schrieffer- Wolff Transformation

Anderson Model

s-d Model

Schrieffer-Wolff transformation

UVkd <<
Existence of 

localized moment

ε

εF

Ed

Ed+U



Schrieffer- Wolff Transformation
From: Anderson Model (single occupation)

with

To: s-d (Kondo) Model



History of Kondo Phenomena
� Observed in the ‘30s
� Explained in the ‘60s

� Numerically Calculated in the ‘70s (NRG)
� Exactly solved in the ‘80s (Bethe-Ansatz)

So, what’s new about it?

Kondo correlations observed in many different set u ps:
� Transport in quantum dots, quantum wires, etc
� STM measurements of magnetic structures on metallic 

surfaces (e.g., single atoms, molecules. “Quantum mirage”)
� ...


