PG5295 – Muitos Corpos

- 1 Electronic Transport in Quantum dots
- 2 Kondo effect: Intro/theory.
- 3 Kondo effect in nanostructures

Prof. Luis Gregório Dias - DFMT

PG5295 – Muitos Corpos

1 – Electronic Transport in Quantum dots

→ 2 – Kondo effect: Intro/theory.

3 – Kondo effect in nanostructures

Prof. Luis Gregório Dias – DFMT

Basic references for today's lecture:

A.C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Press, 1993.

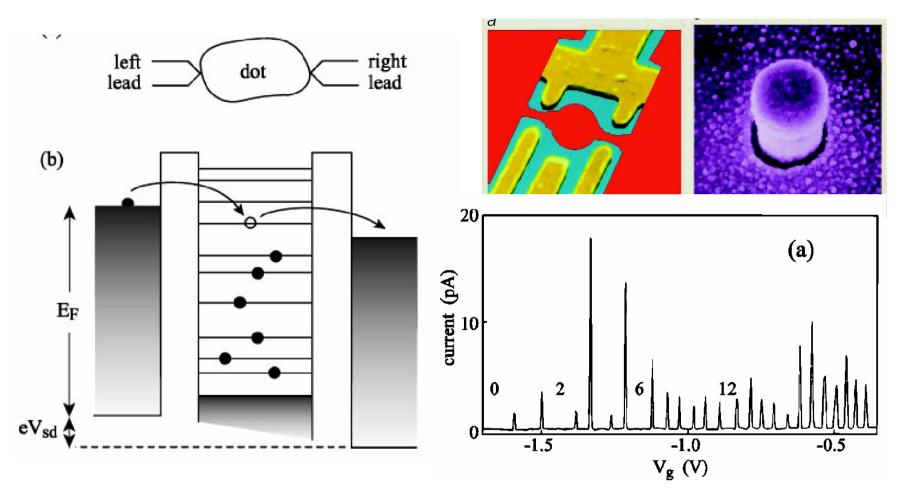
R. Bulla, T. Costi, Prushcke, Rev. Mod. Phys (in press) arXiv 0701105.

K.G. Wilson, Rev. Mod. Phys. 47 773 (1975).

Lecture 2: Outline

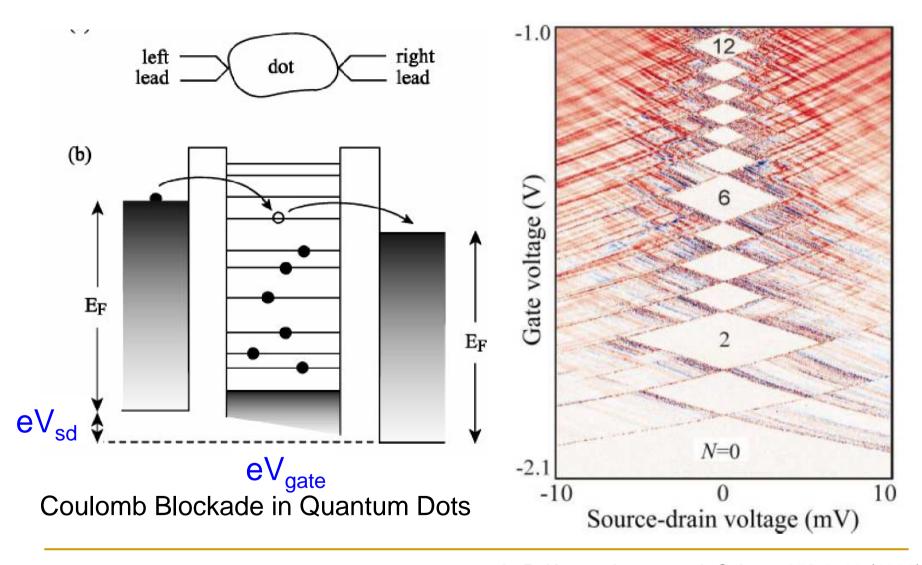
- Kondo effect: Intro.
- Kondo's original idea: Perturbation theory.
- Numerical Renormalization Group (NRG).
- s-d and Anderson models.
- NRG results for the local density of states.

Coulomb Blockade in Quantum Dots

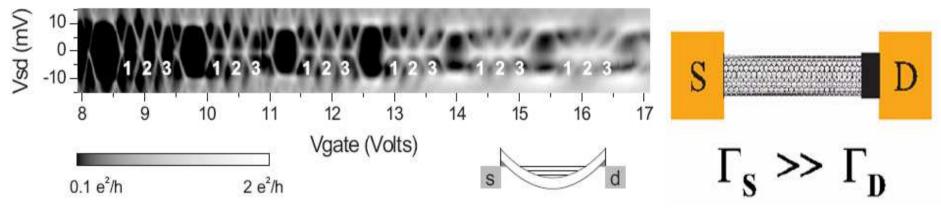


Coulomb Blockade in Quantum Dots: "dot spectroscopy"

"Coulomb Diamonds" (Stability Diagram)

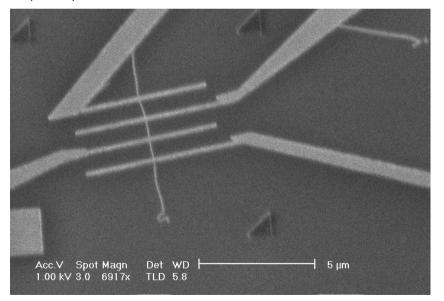


"Carbon nanotube Quantum dots".



Makarovski, Zhukov, Liu, Filkenstein PRB 75 241407R (2007).

- Carbon nanotubes depsited on top of mettalic electrodes.
- Quantum dots defined within the carbon nanotubes.
- More structure than in quantum dots: "shell structure" due to orbital degeneracy.



Lecture 2 (coming up...)

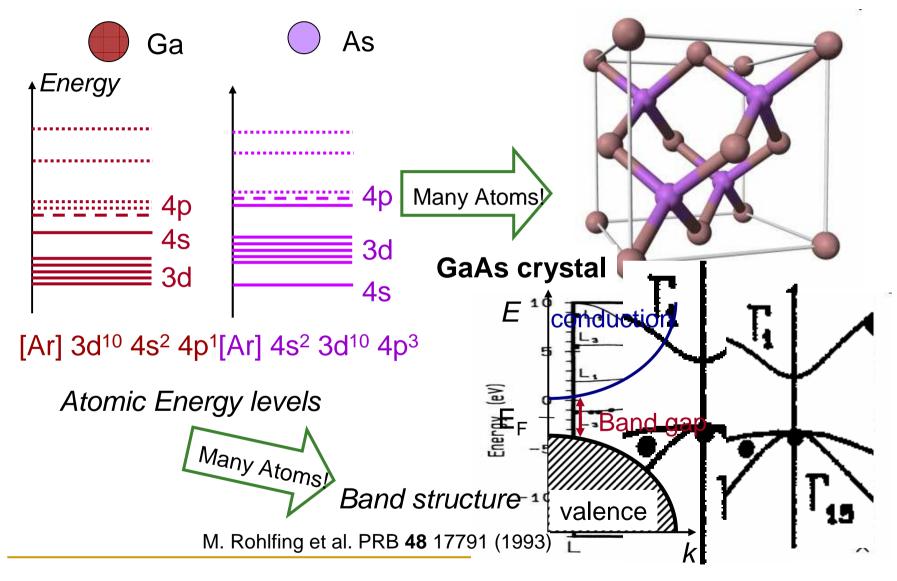
"More is Different"

"The behavior of large and complex aggregates of elementary particles, it turns out, is not to be understood in terms of simple extrapolation of the properties of a few particles.

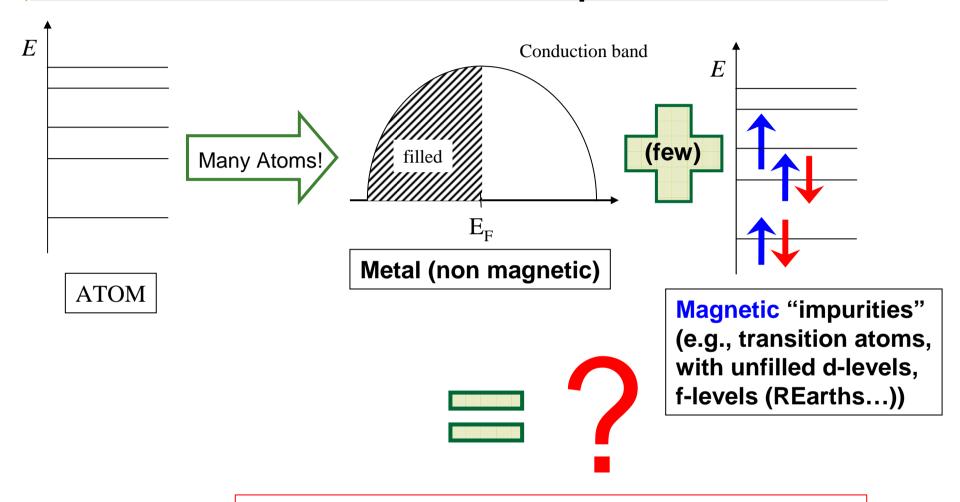
Instead, at each level of complexity entirely new properties appear and the understanding of the new behaviors requires research which I think is as fundamental in its nature as any other."

Phillip W. Anderson, "More is Different", Science **177** 393 (1972)

Can you make "atoms" out of atoms?



From atoms to metals, plus atoms...



Is the resulting compound still a metal?

Kondo effect

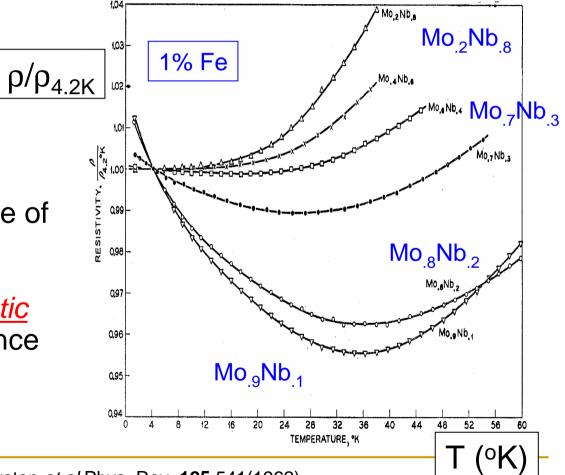
μ_{Fe}/μ_B 2 γ Zr Nb Mo Re Ru Rh ELECTRON CONCENTRATION

Magnetic impurity in a metal.

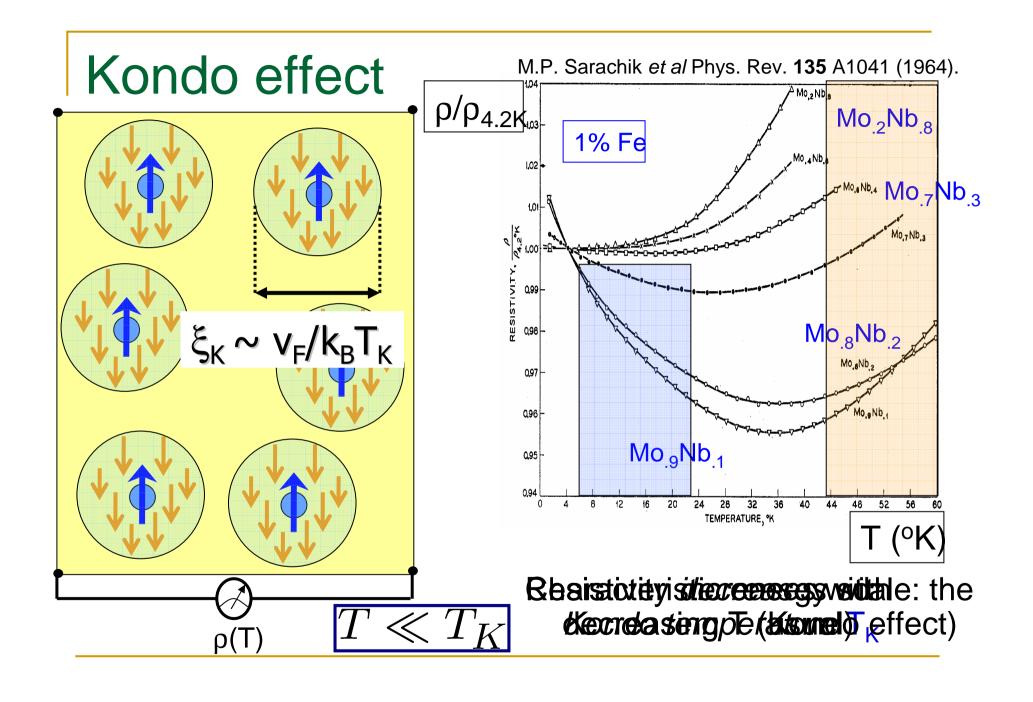
30's - Resisivity measurements:minimum in ρ(T);

 T_{min} depends on $c_{imp.}$

 60's - Correlation between the existence of a Curie-Weiss component in the susceptibility (<u>magnetic</u> <u>moment</u>) and resistance minimum.

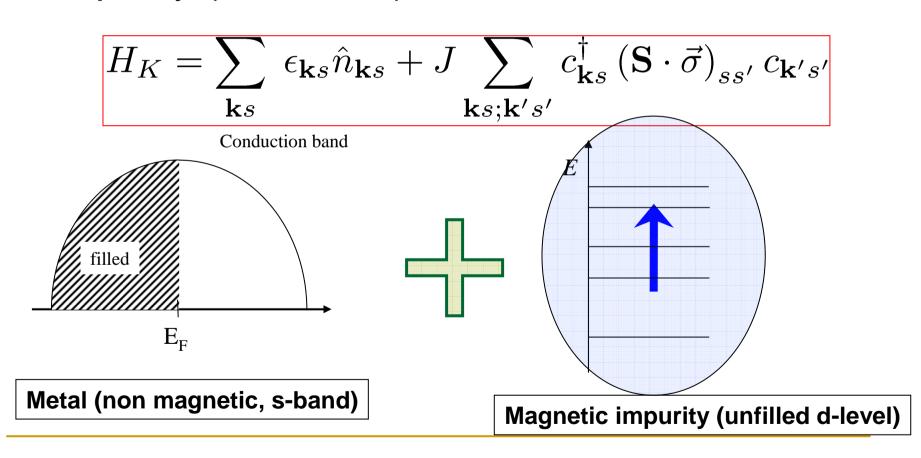


Top: A.M. Clogston *et al* Phys. Rev. **125** 541(1962). Bottom: M.P. Sarachik *et al* Phys. Rev. **135** A1041 (1964).

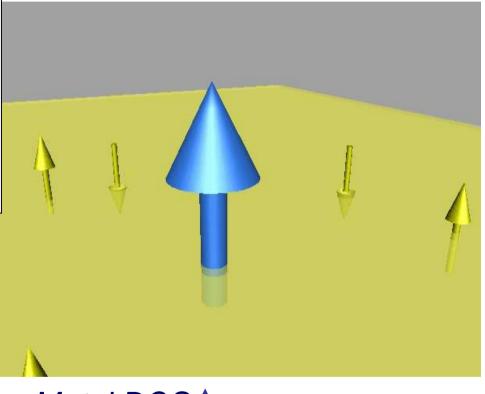


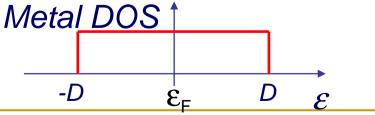
Kondo problem: s-d Hamiltonian

Kondo problem: s-wave coupling with spin impurity (s-d model):



- Many-body effect: virtual bound state near the Fermi energy.
- AFM coupling (J>0)→ "spin-flip" scattering
- Kondo problem: s-wave coupling with spin impurity (s-d model):

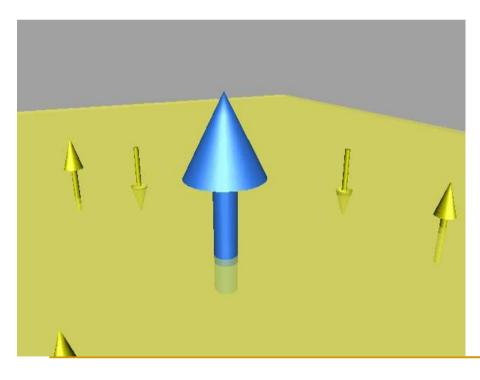




- Perturbation theory in J^3 :
 - Kondo calculated the conductivity in the linear response regime

$$\left| R_{\text{imp}}^{\text{spin}} \propto J^2 \right| 1 - 4J \rho_0 \log \left(\frac{k_B T}{D} \right) \right|$$

$$R_{\text{tot}}(T) = aT^5 - c_{\text{imp}}R_{\text{imp}}\log\left(\frac{k_BT}{D}\right)$$



$$T_{\min} = \left(\frac{R_{\rm imp}D}{5ak_B}\right)^{1/5} c_{\rm imp}^{1/5}$$

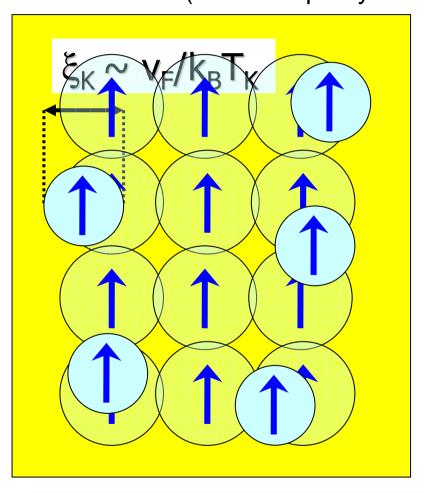
- Only <u>one</u> free paramenter: the Kondo temperature T_K
 - Temperature at which the perturbative expansion diverges. $k_{\scriptscriptstyle R}T_{\scriptscriptstyle K} \sim De^{-1/2J\rho_0}$

$$R_{\text{tot}}(T) = aT^5 - c_{\text{imp}}R_{\text{imp}}\log\left(\frac{k_B T}{D}\right)$$

 ϵ_{F}

Kondo Impurity and Lattice models

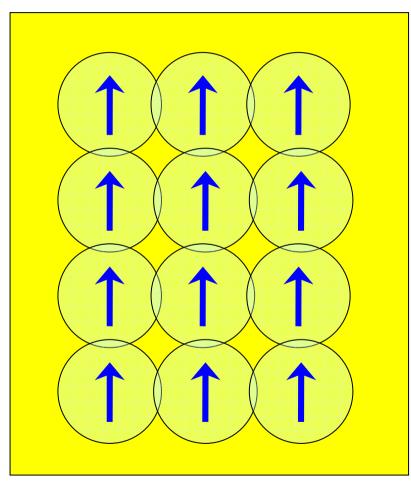
"Spincentrated" Koase: Kondon Lattice (e.g., some heavy-Fermion materials)



- Kondo impurity model suitable for diluted impurities in metals.
- Some rare-earth compounds (localized 4f or 5f shells) can be described as "Kondo lattices".
- This includes so called "heavy fermion" materials (e.g. Cerium and Uranium-based compounds: CeCu₂Si₂; UBe₁₃; etc).

Kondo Lattice models

"Concentrated" case: Kondo Lattice (e.g., some heavy-Fermion materials)



- Kondo impurity model suitable for diluted impurities in metals.
- Some rare-earth compounds (localized 4f or 5f shells) can be described as "Kondo lattices".
- This includes so called "heavy fermion" materials (e.g. Cerium and Uranium-based compounds CeCu₂Si₂, UBe₁₃).

A little bit of Kondo history:

- Early '30s: Resistance minimum in some metals
- Early '50s: theoretical work on impurities in metals "Virtual Bound States" (Friedel)
- 1961: Anderson model for magnetic impurities in metals
- 1964: s-d model and Kondo solution (PT)
 - 1970: Anderson "Poor's man scaling"
 - 1974-75: Wilson's Numerical Renormalization Group (non PT)
 - 1980 : Andrei and Wiegmann's exact solution

A little bit of Kondo history:

Early '30s: Resista

Early '50s: theoreti

in some metals purities in metals

■ 1961: An Kenneth G. Wilson – Physics Nobel Prize in 1982 "for his theory for critical phenomena in connection with phase transitions"

1964: s-d model and Kon solution (PT)

1970: Anderson "Poor's men scaling"

■ 1980 : Andrei and Wiegmann's exact solution

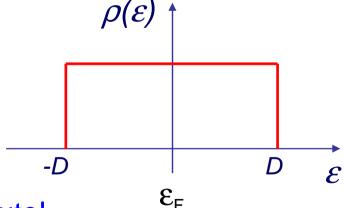
$$\left| R_{\text{tot}} \left(T \right) = aT^5 - c_{\text{imp}} R_{\text{imp}} \log \left(\frac{k_B T}{D} \right) \right|$$

□ Diverges <u>logarithmically</u> for T→0 or D→∞.

What is going on? $\{ (T < T_K \to \text{perturbation expassion no longer holds}) \\ \text{Experiments show } \underline{finite} \text{ R as } T \to 0 \text{ or } D \to \infty.$

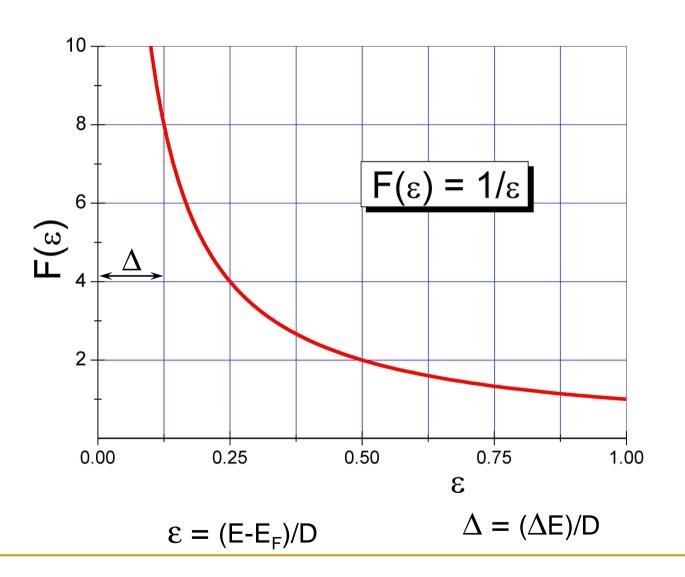
- The log comes from something like:

$$\int_{k_BT/D}^{1} \frac{d\varepsilon}{\varepsilon} = -\log\left(\frac{k_BT}{D}\right)$$

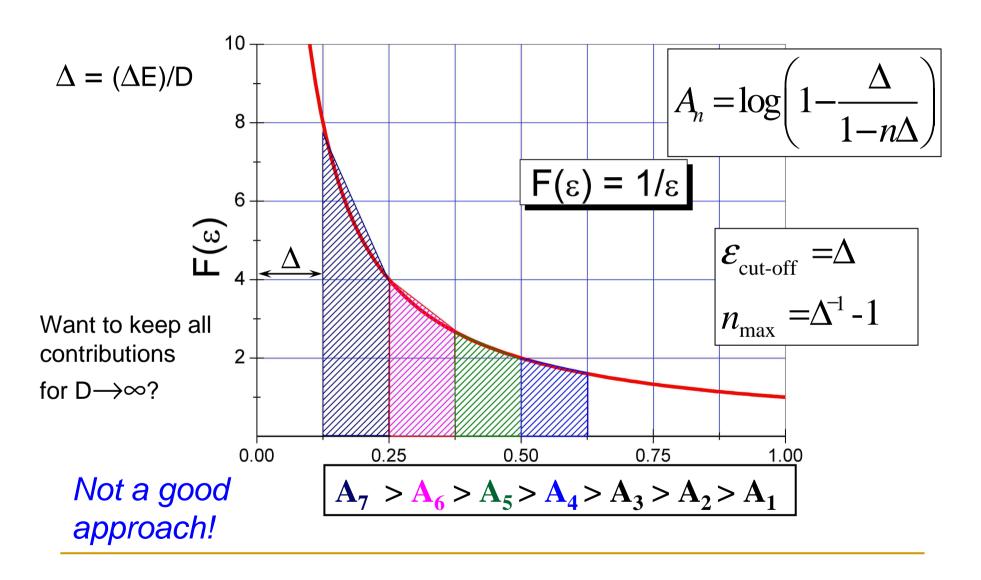


All energy scales contribute!

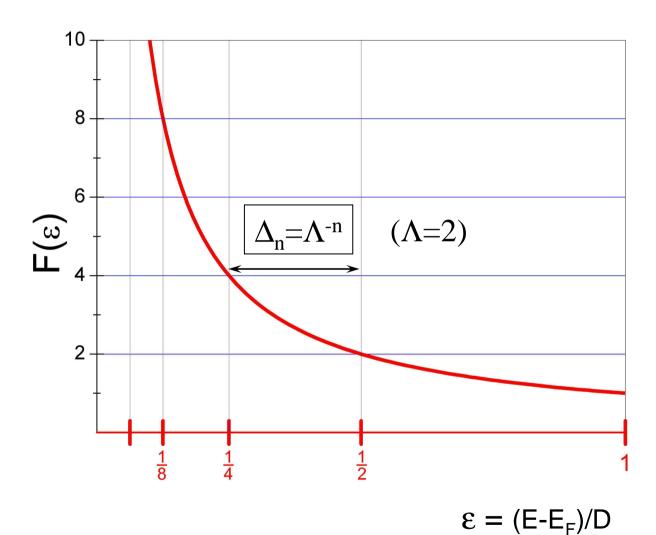
"Perturbative" Discretization of CB



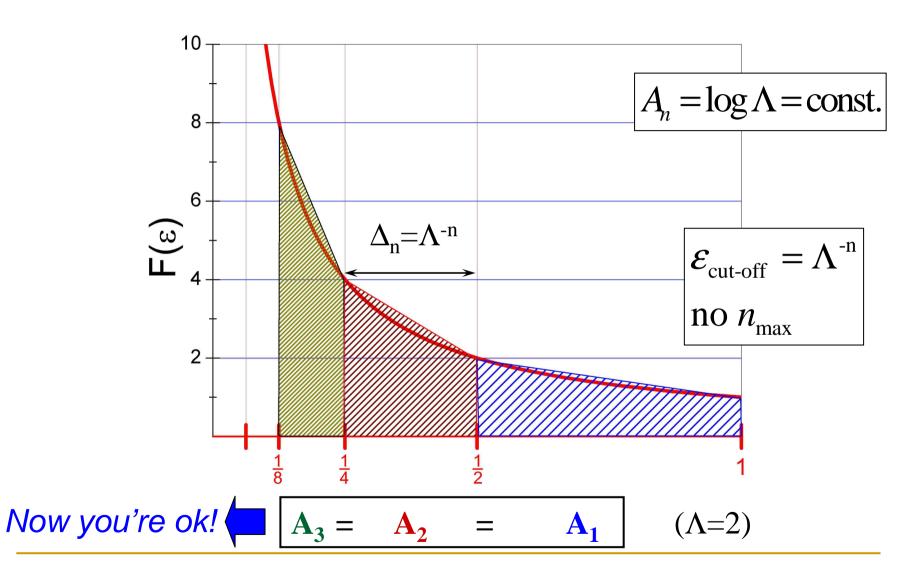
"Perturbative" Discretization of CB



Wilson's CB Logarithmic Discretization

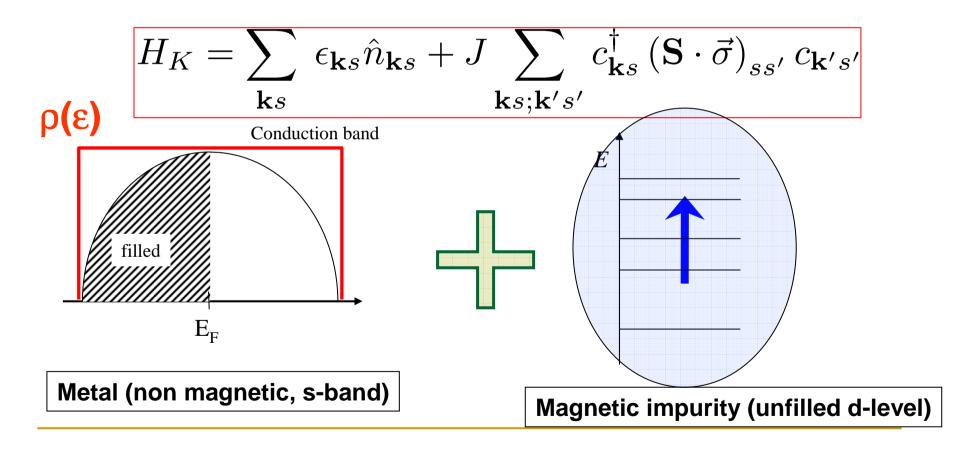


Wilson's CB Logarithmic Discretization



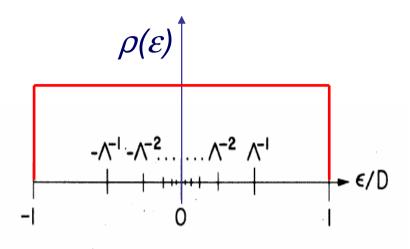
Kondo problem: s-d Hamiltonian

Kondo problem: s-wave coupling with spin impurity (s-d model):



Kondo s-d Hamiltonian

$$\begin{split} H_{\text{s-d}} &= J \sum_{\mathbf{k},\mathbf{k'}} S^{+} \, \mathbf{c}_{\mathbf{k}\downarrow}^{\dagger} \mathbf{c}_{\mathbf{k'}\uparrow} + S^{-} \, \mathbf{c}_{\mathbf{k}\uparrow}^{\dagger} \mathbf{c}_{\mathbf{k'}\downarrow} \\ &+ S_{z} \left(\mathbf{c}_{\mathbf{k}\uparrow}^{\dagger} \mathbf{c}_{\mathbf{k'}\uparrow} - \mathbf{c}_{\mathbf{k}\downarrow}^{\dagger} \mathbf{c}_{\mathbf{k'}\downarrow} \right) \\ &+ \sum_{\mathbf{k}} \mathbf{e}_{\mathbf{k}} \, \mathbf{c}_{\mathbf{k}\sigma}^{\dagger} \mathbf{c}_{\mathbf{k}\sigma} \end{split}$$

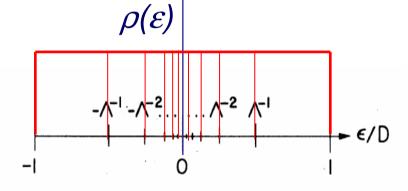


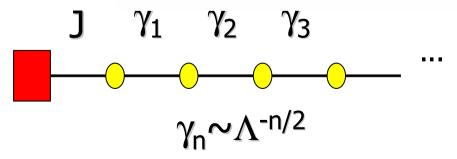
- From continuum k to a discretized band.
- Transform H_{s-d} into a linear chain form (exact, as long as the chain is infinite):

$$H_K = \sum_{n=0}^{\infty} \epsilon_n (f_n + f_{n+1} + f_{n+1} + f_n) - 2J f_0 + \sigma f_0 \cdot \tau,$$

"New" Hamiltonian (Wilson's RG method)

- Logarithmic CB discretization is the key to avoid divergences!
- Map: conduction band → Linear Chain
 - Lanczos algorithm.
 - □ Site $n \rightarrow$ new energy scale:
 - \Box $D\Lambda^{-(n+1)} < | \epsilon_k \epsilon_F | < D\Lambda^{-n}$
 - Iterative numerical solution

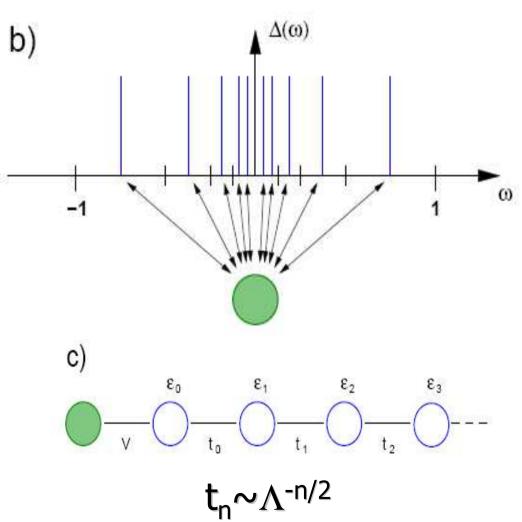




Logarithmic Discretization.

Steps:

- Slice the conduction band in intervals in a log scale (parameter Λ)
- Continuum spectrum approximated by a single state
- Mapping into a tight binding chain: sites correspond to different energy scales.



Wilson's CB Logarithmic Discretization

• Logarithmic Discretization (in space):

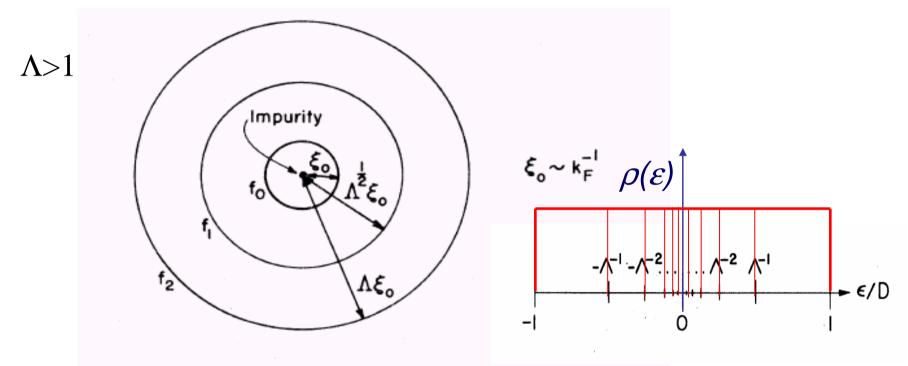


FIG. 4. Spherical shells in r space depicting the extents of the wave functions of f_n . Within their shells, every wave function has oscillations so that they are mutually orthogonal. Alternately one can show that, in the wave-vector space,

Wilson's CB Logarithmic Discretization

• Logarithmic Discretization (in energy):

 $\Lambda > 1$

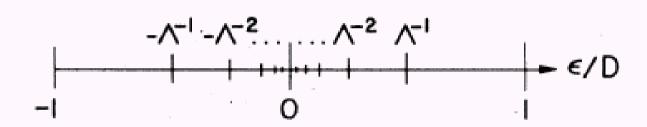
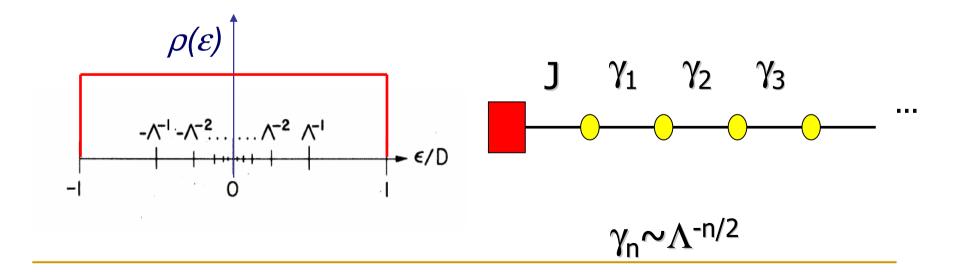


FIG. 1. Logarithmic discretization of the conduction bond. The Fermi energy is at zero and the top and bottom of the conduction bond at $k = \epsilon/D = +1$ and -1, respectively.

"New" Hamiltonian (Wilson)

Recurrence relation (Renormalization procedure).

$$H_{N+1} = \sqrt{\Lambda}H_N + \xi_N \sum_{\sigma} f_{N+1\sigma}^{\dagger} f_{N\sigma} + f_{N\sigma}^{\dagger} f_{N+1\sigma}$$

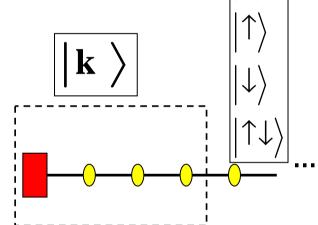


"New" Hamiltonian (Wilson)

 Suppose you diagonalize H_N getting E_k and |k> and you want to diagonalize H_{N+1} using this basis.

First, you expand your basis:

$$\begin{aligned} |\Omega; k\rangle &= |k\rangle, \\ |\frac{1}{2}; k\rangle &= f_{N+1,\frac{1}{2}} + |k\rangle, \\ |-\frac{1}{2}; k\rangle &= f_{N+1,-\frac{1}{2}} + |k\rangle, \\ |\frac{1}{2}, -\frac{1}{2}; k\rangle &= f_{N+1,\frac{1}{2}} + f_{N+1,-\frac{1}{2}} + |k\rangle. \end{aligned}$$



Then you calculate <k,a|f⁺_N|k',a'>,
<k,a|f_N|k',a'>and you have the matrix elements for H_{N+1} (sounds easy, right?)

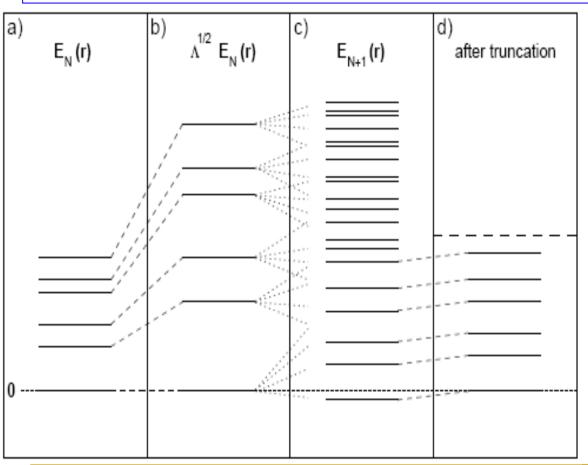
Intrinsic Difficulty

You ran into problems when N~5. The basis is too large! (grows as 2^(2N+1))
N=0; (just the impurity); 2 states (up and down)
N=1; 8 states
N=2; 32 states
N=5; 2048 states
(...) N=20; 2.199x10¹² states:
1 byte per state → 20 HDs just to store the basis.

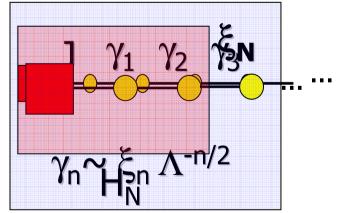
- Arr And we might go up to N=180; 1.88x10¹⁰⁹ states.
 - Can we store this basis?
 (Hint: The number of atoms in the universe is ~ 10⁸⁰)
- Cut-off the basis → lowest ~1500 or so in the next round (Even then, you end up having to diagonalize a 4000x4000 matrix...).

Renormalization Procedure

$$H_{N+1} = \sqrt{\Lambda}H_N + \xi_N \sum_{\sigma} f_{N+1\sigma}^{\dagger} f_{N\sigma} + f_{N\sigma}^{\dagger} f_{N+1\sigma}$$



- Iterative numerical solution.
- Renormalize by $\Lambda^{1/2}$.
- Keep low energy states.



Renormalization Group Transformation

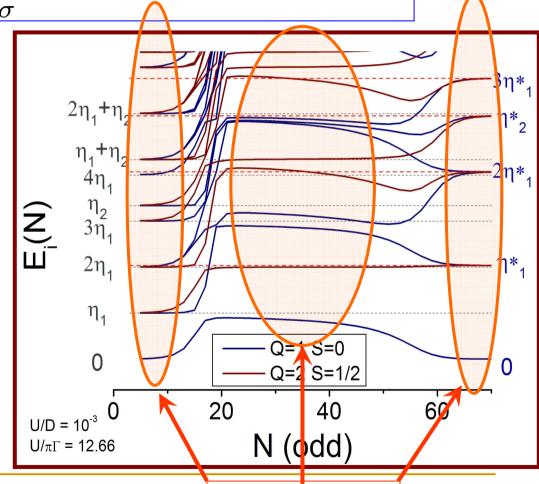
$$H_{N+1} = \sqrt{\Lambda}H_N + \xi_N \sum_{\sigma} f_{N+1\sigma}^{\dagger} f_{N\sigma} + f_{N\sigma}^{\dagger} f_{N+1\sigma}$$

• Renormalization Group transformation: (Rescale energy by $\Lambda^{1/2}$).

$$H_{N+1} = R(H_N)$$

Fixed point H*: indicates scale invariance.

$$H^* = R^2(H^*)$$



Fixed points

Spectral function calculation

Local Density of states: Lehmann representation.

$$A_{\sigma}(\omega, T=0) = \frac{1}{Z(0)} \sum_{r} |M_{r,0}|^2 \delta(\omega + (E_r - E_0))$$

$$+\frac{1}{Z(0)}\sum_{r'}|M_{0,r'}|^2\delta(\omega-(E_{r'}-E_0)),\tag{6}$$

At each NRG step, you define

$$A_{\sigma}^{N}(\omega, T=0) = \frac{1}{Z_{N}(0)} \sum_{r} |M_{r,0}^{N}|^{2} \delta(\omega + E_{r}^{N})$$

$$+\frac{1}{Z_N(0)} \sum_{r'} |M_{0,r'}^N|^2 \delta(\omega - E_{r'}^N). \tag{68}$$

$$H_N|r\rangle_N = E_r^N|r\rangle_N,$$

$$M_{r,r'}^N = {}_N \langle r | f_\sigma | r' \rangle_N,$$

Spectral function

At each NRG step:

$$H_N|r\rangle_N = E_r^N|r\rangle_N,$$

$$M_{r,r'}^N = {}_N \langle r | f_\sigma | r' \rangle_N,$$

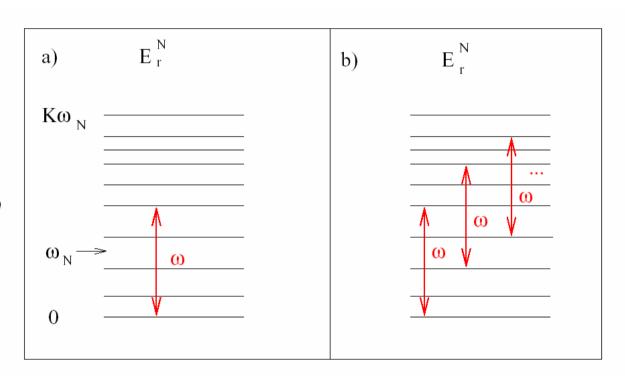


FIG. 9 Excitations of H_N contributing to the spectral function at frequency ω for, (a), T = 0, and, (b), T > 0.

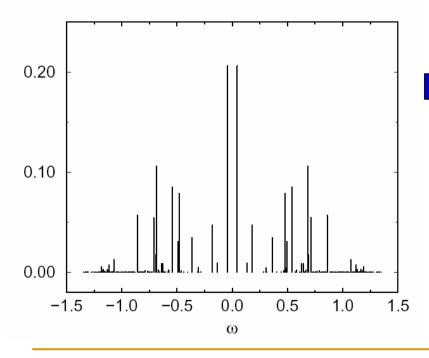
Spectral function calculation (Costi)

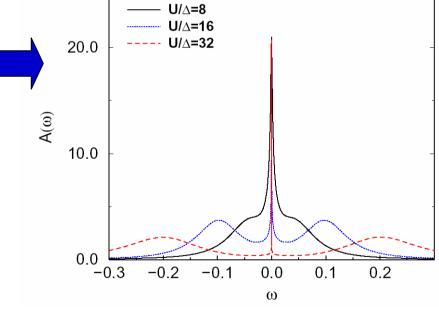
$$A_{\sigma}^{N}(\omega, T=0) = \frac{1}{Z_{N}(0)} \sum_{r} |M_{r,0}^{N}|^{2} \delta(\omega + E_{r}^{N})$$

$$+\frac{1}{Z_N(0)}\sum_{r'}|M_{0,r'}^N|^2\delta(\omega-E_{r'}^N).$$

To get a continuos curve, need to broaden deltas.
Best choice: log gaussian

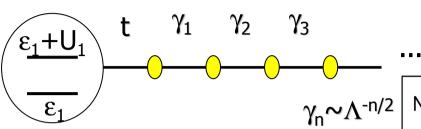
$$\delta(\omega - \omega_n) \to \frac{e^{-b^2/4}}{b\omega_n\sqrt{\pi}} \exp\left[-\frac{(\ln \omega - \ln \omega_n)^2}{b^2}\right]$$



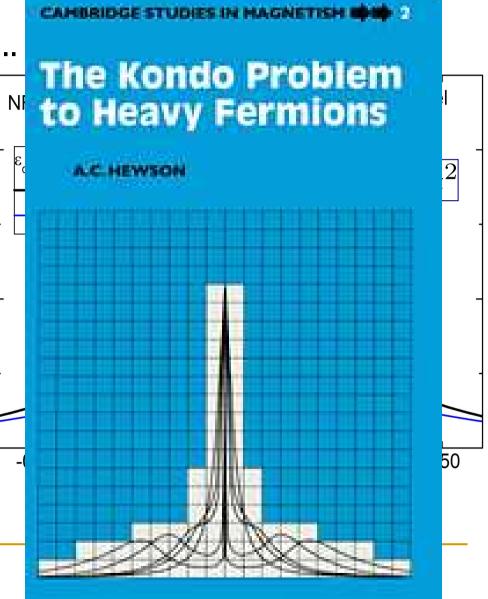


NRG on Anderson model: LDOS

 $\rho_{\rm d}(\omega)$



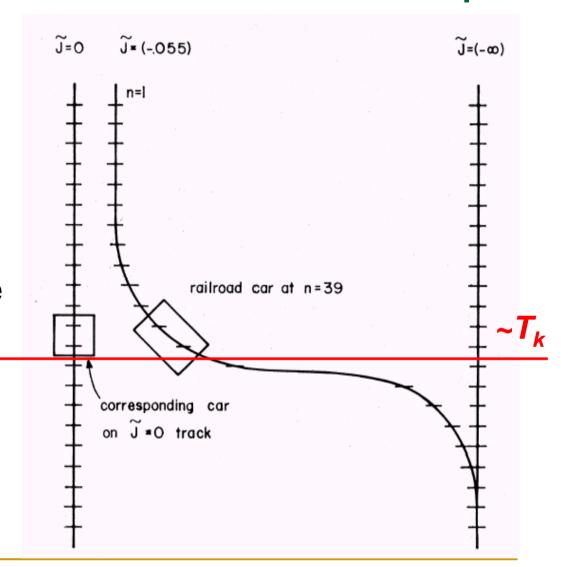
- Single-particle peaks at ε_d and ε_d +U.
- Many-body peak at the Fermi energy: Kondo resonance (width ~T_K).
- NRG: good resolution at low ω (log discretization).



Numerical Renormalization Group

What can you do?

- Describe the physics at different energy scales for arbitrary *J.*
- Probe the parameter phase diagram.
- Crossing between the "free" and "screened" magnetic moment regimes.
- Energy scale of the transition is of order
 T_k



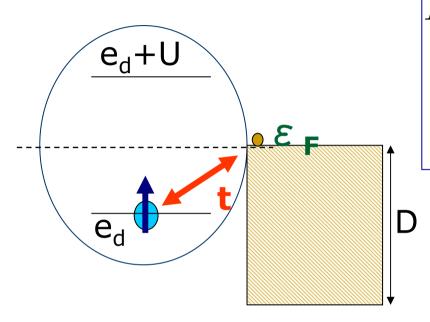
Recent Developments: TD-NRG

Application: time dependent impurity problems

Summary: NRG overview

- NRG method: designed to handle quantum impurity problems
- All energy scales treated on the same footing.
- Non-perturbative: can access transitions between fixed points in the parameter space
- Calculation of physical properties

Anderson Model



- e_d: energy level
- U: Coulomb repulsion
- e_F: Fermi energy in the metal
- t: Hybridization
- D: bandwidth

"Quantum dot language"

- e_d: position of the level (V_g)
- U: Charging energy
- e_F: Fermi energy in the leads
- t: dot-lead tunneling
- D: bandwidth

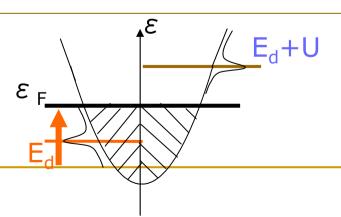
Schrieffer- Wolff Transformation

Anderson Model

Existence of localized moment $V_{kd} << U$

Schrieffer-Wolff transformation

s-d Model



Schrieffer- Wolff Transformation

From: Anderson Model (single occupation)

$$H = \epsilon_{d}\hat{n}_{d\sigma} + U\hat{n}_{d\uparrow}\hat{n}_{d\downarrow} + \sum_{k} \epsilon_{k}\hat{n}_{k\sigma} \qquad \mathbf{w}$$

$$+t\sum_{k} c_{d\sigma}^{\dagger}c_{k\sigma} + \mathbf{h.c.}$$

with

$$\hat{n}_{d\sigma} = c_{d\sigma}^{\dagger} c_{d\sigma}
\hat{n}_{k\sigma} = c_{k\sigma}^{\dagger} c_{k\sigma}$$

$$+t\sum_{k}c_{d\sigma}^{\dagger}c_{k\sigma}+\text{h.c.}$$

$$J=t^{2}\sum_{k,k'}\left\{\frac{1}{U+\epsilon_{d}-\epsilon_{k'}'}+\frac{1}{\epsilon_{k}-\epsilon_{d}}\right\}$$
(Kondo) Model

To: s-d (Kondo) Model

$$H_{\text{S-d}} = J \sum_{kk'} S^{+} c_{k\downarrow}^{\dagger} c_{k'\uparrow} + S^{-} c_{k\uparrow}^{\dagger} c_{k'\downarrow}$$
$$+ S_{z} \left(c_{k\downarrow}^{\dagger} c_{k'\uparrow} - c_{k\downarrow}^{\dagger} c_{k'\downarrow} \right)$$
$$+ \sum_{k} \epsilon_{k} \hat{n}_{k\sigma}$$

History of Kondo Phenomena

- Observed in the '30s
- Explained in the '60s
- Numerically Calculated in the '70s (NRG)
- Exactly solved in the '80s (Bethe-Ansatz) So, what's new about it?

Kondo correlations observed in many different set ups:

- Transport in quantum dots, quantum wires, etc.
- STM measurements of magnetic structures on metallic surfaces (e.g., single atoms, molecules. "Quantum mirage")
- **...**