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Abstract

In this notes we intend to discuss the concept of Topological Order through the explicit
description of an exactly solvable model known as the Toric Code which in turn is a
particular limit of a larger class of models encompassed by the term Kitaev Model.

1 Introduction

Matter can present itself in nature in several different states or phases. The most known of
them being gas, liquid and solid. Besides these states of matter we can distinguish other ore
intrincate states that can occur in different situations and scales, for instance: plasmas, Bose-
Einstein condensates, quantum spin liquids or superfluids to mention a few.

States of matter are, in general, classified into phases that can be connected to each other
via phase transitions. This is, different states of matter can be distinguished by their internal
structure or order. To visualize this we can think on the example of a solid at some finite
temperature where the atoms are arranged in an almost regular pattern whose specific form
depends on the solid constituents their interactions and the external conditions such as pressure
and temperature. Let us assume that we choose to vary some of this external conditions, say,
the temperature, eventually the crystal order will undergo a phase transition into a liquid phase
where the motion of atoms is now less correlated. If we continue raising the temperature the
system will again go through a phase transition into a very disordered phase, namely, it will
become a gas, where the motion of an atom now hardly depends on the motion of the other
constituents.

In this sense, phases of matter could, in principle, be classified by means of phase transitions.
Under this scheme different phases of matter have different internal structure or order. One key
step in order to develop a general theory that could ultimately classify these phases of matter
was the realization that the internal orders of a system are related to the symmetries of its
elementary constituents. As a material undergoes a phase transition the internal symmetries
of the system change. This is the fundamental idea in what is known as the Ginzburg-Landau
theory of phase transitions [1, 2, 3] that was originally developed to describe the transition to a
superconductor phase of matter by means of a local order parameter and its fluctuations. For
a long time it was thought that this theory could describe all phases of matter and their phase
transitions.

In the 1980’s, a major discovery regarding a system of strongly correlated electrons was
made, creating what is known as 2-dimensional electron gas (2DEG), which when subject to
strong magnetic fields at very low temperatures [4] forms a new kind of order. These states are
characterized by a quantity coined filling fraction that measures the ratio of the electron density
and the flux quanta of the external magnetic field that is being applied, this is

ν =
nhc

eB
, (1)
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where n is the electron density. Those states for which this quantity is an integer number are
called Integer Quantum Hall states (IQH) whereas those states for which ν is a fractional
number are, correspondingly, called Fractional Quantum Hall states (FQH). While the former
can be understood from the Landau level structure1 the latter requires an entirely new theory.
The novelty brought by the FQH states is that they show internal orders or “patterns” that do
not have any relation with any kind of symmetries (or the breaking of them) and thus cannot
be described by the usual Ginzburg-Landau symmetry-breaking scheme. These patterns consist
on a highly correlated motion of the electrons around each other such that they do their own
cyclotron motion in the first Landau level, an electron always takes integer steps to go around
another neighboring electron and they tend to be apart from each other as much as possible
(which makes the fluid an incompressible one). It is this global motion pattern that corresponds
to the topological order in FQH states [5]. Aditionally FQH states have a very special feature,
as their ground state is degenerate and this degeneracy depends on the topology of the space
[6, 7, 8] that can not be modified by perturbations or impurities [5], for instance the Laughlin
state with ν = 1/q has a degeneracy of qg where g is the genus of the manifold the system
is embedded into; thus, only a change in the internal pattern or topological order (implying
a change on ν for the cited state) can induce a change in the ground state degeneracy, since
topological order is a property of the ground state of the system.

The features of topologically ordered systems are not restricted to the topology dependent
ground state degeneracy. The low energy excitations of such systems exhibit characteristic
properties such as the fractionalization of the charge and anyonic statistics. In particular, for the
FQH states, which arise in systems whose constituents are electrons each one with charge e, the
excitations carry a charge that is a fraction of e. Although this might seem to be disconnected
with the topological order at first glance, it is closely related to the degeneracy as it can be
shown that fractionalization implies the degeneracy of the ground state [9, 10]. Another feature
involving the quasi particle excitations of such systems is that they obey exotic statistics. In 3
spatial dimensions it is known that the quantum states of identical particles behave either as
bosons or fermions under an exchange of a pair. Nevertheless, in two dimensional systems, such
as the FQH states, there are new possibilities for quantum statistics that interpolate between
those of bosons and fermions. Under an exchange of two quasi-particles the quantum state
can acquire and overall phase eiθ, where the special cases θ = 0, π correspond to the bosonic
and fermionic statistic respectively. The statistical angle θ can take different values, and the
particles obeying these generalized statistics are called anyons [11, 12, 13, 14, 15, 16].
Another phenomenon related to topological order can be exemplified through the excitations
arising at the edges of the FQH liquids. The excitations on the bulk of the system are gapped,
meaning there is a finite energy difference between the ground state and the elementary excited
states. Nevertheless, in the boundary of the system (the FQH liquid) gappless excitations arise
2. The structure of the edge excitations depend on the bulk topological order, as for different
types of order in the bulk there are different edge excitations structures, that can be understood
as surface (edge) waves propagating along the border of the FQH liquid [17, 18].

Thus, FQH liquids are very different from any other state of matter because they ordered in
a different way, they exhibit topological order. Hence there is a need for a general theory of topo-
logical phases and consequently the need for a mathematical framework that could ultimately
characterize and classify these topological phases of matter. In the past few years there has been
a major interest on the study of these phases of matter via a detailed analysis of exactly solvable

1The motion of a single electron subject to a magnetic field consists in a circular orbit which is quantized
(due to the wave-particle duality) in terms of the wavelength of the electron, so if an electron takes n steps to go
around a circular orbit we say it is in its nth Landau level.

2A gapless excitation is such that its energy goes to zero as its momentum goes to zero, or equivalently, only
an infinitesimal amount of energy is required to go from the ground state to an excited state.
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lattice models which exhibit the features of having topological order. The simplest example
is the so called Toric Code model introduced by A. Kitaev in [19] which is constructed as a
many body interacting system defined over a 2-dimensional lattice. It exhibits the features of
a topologically order system as its ground state is 4-fold degenerate when the lattice is embed-
ded on the surface of a Torus, hence part of its name. The degeneracy is protected from local
perturbations that come as the elementary excitations of the model. These elementary excited
states can be interpreted as quasi-particle anyonic excitations located at the vertices and faces of
the lattice, they display both bosonic and fermionic statistics when braided among themselves.
This model can be interpreted as a particular lattice gauge theory [20] where the gauge group
is the abelian Z2 group [21]. Furthermore, for any finite group G, in [19] Kitaev introduces
a more general class of models called Quantum Double Model (QDM) defined through a
Hamiltonian that is written as a sum of mutually commuting projectors [22, 23, 24, 25]. The
elementary excitations of this models are anyons whose fusion and braiding properties depend
on the specific choice of the group G giving rise to the possibility of having non-abelian anyons
that can be used to implement a fault-tolerant quantum computation process [26, 27, 28, 29],
where unitary transformations are obtained by the braiding of anyons and the final measurement
is performed by the joining of pairs of excitations. Moreover, a large class of topological orders
were identified by the systematic construction of the so called string-net models [18, 30] where
it is shown that each topological phase is associated to a fusion category. The QDM being a
subclass of these models as shown in [31].

2 Kitaev Model

Also known as the Honeycomb model the model is defined on an hexagonal two dimensional
lattice, 1/2 spin degrees of freedom live on the vertices of the lattice. The dynamics is governed
by the following Hamiltonian

H = −Jx
∑

x-links

σxj σ
x
k − Jy

∑
y-links

σyj σ
y
k − Jz

∑
z-links

σzjσ
z
k, (2)

where Jx, Jy and Jz are the model‘s free parameters. The interactions are split into three types
depending on the kind of link as shown in Fig. 1. It is through the variation of these free
parameters that the parameter space is explored and we will focus on a particular limit coined
topological limit.

Figure 1: Honeycomb lattice, the x,y and z bonds are explicitly shown

As an aside we will like to say that the model can be exactly solved by mapping the spins
into four majorana fermions. This transformation makes the Hamiltonian a quadratic one which
makes an exact solution possible. We refer the reader to [32] for the details of such solution.
The phase diagram of the model exhibits both gapped and gapless phases. In particular, the
case when |Jz| � |Jx|, |Jy| the model lies in a gapped phase. In such a phase the correlations
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decay exponentially with distance, which means that the quasi-particles cannot interact directly.
Nevertheless, the excitons interact topologically via a braiding procedure. To analyze the topo-
logical properties of this gapped phase we will first map the model into a discrete gauge theory
Hamiltonian via perturbation theory. This is done since the ground state and the low energy
excitations are easily studied using this new Hamiltonian.

2.1 Perturbation Theory

The Hamiltonian is now written as:

H = H0 + V = −Jz
∑

z-links

σzjσ
z
k − Jx

∑
x-links

σxj σ
x
k − Jy

∑
y-links

σyj σ
y
k . (3)

Let us start considering the case when |Jx| = |Jy| = 0, notice that the ground state of this sector
consists on a highly degenerate dimer gas where both spins on a z-bond are aligned. Therefore,
each pair can be regarded as a single spin. The equivalence is shown on the first two figures in
Fig.2.

Figure 2: On the left, the z-bonds are mapped into a single spin degree of freedom as shown in the middle figure. On
the right each effective spin is mapped to the edges of an square lattice.

The idea is to find an effective Hamiltonian that acts on the Hilbert space of effective spins
Heff living on the vertices of a square lattice. This can be done using the Green function
formalism as follows. Consider the map Γ : Heff → H that sends the effective Hilbert space into
the ground state subspace of H0. The map Γ simply doubles each spin, namely Γ |m〉 = |mm〉.
The eigenvalues of Heff are supposed to be the energy levels of H that originate from H0. These
energy levels can be defined to be the poles of the Green function G(E) = Γ†(E−H)−1Γ which
is an operator acting on the effective Hilbert space. The effective Hamiltonian can be written
as Heff = E0 + Σ(E0), where Σ(E0) is called the self-energy. Σ(E0) is computed via a Dyson
series. Let G0(E) = (E − H0)

−1 be the unperturbed Green function for the excited states of
H0. Then the self energy is given by:

Σ(E) = Γ† (V + V G0(E)V + V G0(E)V G0(E)V + . . . ) Γ (4)

Then, set E = E0 and compute Heff = E0 + Σ in the zeroth order: H
(0)
eff = E0. The following

orders are calculated until a non constant term is found, namely:

H
(1)
eff = Γ†V Γ = 0. (5)

H
(2)
eff = Γ†V G0V Γ = −

∑
x-links

J2
x

4Jz
−
∑

y-links

J2
y

4Jz
= −N

J2
x + J2

y

4Jz
. (6)

H
(3)
eff = Γ†V G0V G0V Γ = 0. (7)

H
(4)
eff = Γ†V G0V G0V G0V Γ = −

J2
xJ

2
y

16J3
z

∑
p

Qp, where: Qp = σyi1σ
y
i2
σzi3σ

z
i4 (8)
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Thus the effective Hamiltonian up to an additive constant reads

Heff = −
J2
xJ

2
y

16|J3
z |
∑
p

Qp, (9)

where the spin configuration corresponds to that of the middle Fig.2.

2.2 The Toric Code

The Hamiltonian of eq.(9) can be further transformed into a more familiar form [19, 33, 34].
This procedure corresponds to first mapping the square lattice with spins living at its vertices
to a new square lattice where the spin degrees of freedom now live at the edges (c.f. Fig.2).
Notice that the plaquettes of the first square lattice become plaquettes and vertices of the new
square lattice. As a consequence the effective Hamiltonian now is given by:

Heff = −Jeff

 ∑
vertices

Qs +
∑

plaquettes

Qp

 , (10)

where the effective coupling parameter is that of eq.(9). Secondly, let us apply the following
unitary transformation on the effective Hamiltonian (10)

U :=
∏

horizontal links

Xj

∏
vertical links

Yk, (11)

such that the Hamiltonian 10 becomes:

H ′eff = UHeffU
† = −Jeff

 ∑
vertices

Av +
∑

plaquettes

Bp

 , (12)

where the vertex and plaquette operators are respectively defined by:

Av =
⊗

i∈star(v)

σxi = σxi1 ⊗ σ
x
i2 ⊗ σ

x
i3 ⊗ σ

x
i4 , Bp =

⊗
j∈∂p

σzj = σzj1 ⊗ σ
z
j2 ⊗ σ

z
j3 ⊗ σ

z
j4 , (13)

where the index i ∈ star(v) runs over all four edges around an specific vertex v and j ∈ ∂p
stands for all four edges in the boundary of a plaquette p of the lattice, as shown in Fig. 3 and
the Pauli matrices are given by:

σx =

(
0 1
1 0

)
σz =

(
1 0
0 −1

)
(14)

The algebra of the vertex and plaquette operators is induced by the one of Pauli operators,
recalling the commutation (and anticommutation) relations

[σx, σx] = 0 (15)

[σz, σz] = 0 (16)

σxσz = −σzσx. (17)

These expressions fix the commutation relations of the operators Bp and Av. It is clear that all
Bp commute with each other because of eq.(16), similarly all Av commute with each other since
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Figure 3: A piece of the square lattice; The spin degrees of freedom lie on the edges of the lattice and are represented
by hollow circles. The sites being acted by the Plaquette Operator Bp and the Vertex Operator Av are

explicitly shown.

eq.(15) holds. The commutation relation between Av and Bp is slightly less trivial. However, it
is straightforward to show that they commute, i.e.

[Av, Bp] = 0, (18)

for any vertex v and plaquette p in L.
Since the Pauli matrices are involutory, i.e., (σx)2 = (σy)2 = (σz)2 = 1, where 1 is the 2× 2

identity matrix; it is easy to see that the operators Av and Bp also square to identity, namely:

A2
v = 1⊗ 1⊗ 1⊗ 1 = B2

p . (19)

Now, let us consider an eigenstate |ψv〉 for the Vertex Operator Av and |ψp〉 an eigenstate
of the Plaquette Operator Bp, such that:

Av |ψv〉 = a |ψv〉 Bp |ψp〉 = b |ψv〉 ,

because of the involutory nature of both operators we notice that

(Av)
2 |ψv〉 = 1 |ψv〉 = a2 |ψv〉 (20)

(Bp)
2 |ψp〉 = 1 |ψp〉 = b2 |ψv〉 , (21)

therefore, the only values a and b can take are ±1. Given the Hilbert space on the edges is
spanned by the states |φ1〉 and |φ−1〉 that can be chosen to be the eigenstates of the σz Pauli
operator, this is, we choose a representation for the basis states where

|φ1〉 =

(
1
0

)
|φ−1〉 =

(
0
1

)
, (22)

such that the action of the Pauli matrices on the states is the following:

σx |φ1〉 = |φ−1〉 σx |φ−1〉 = |φ1〉
σz |φ1〉 = |φ1〉 σz |φ−1〉 = − |φ−1〉 .

2.3 Ground States

To find the ground state |Ψ0〉 of Heff , we need to find the condition for the energy to be
minimum in Eq. (12), or equivalently (because of the negative sign in front of each term in
Eq. (12)) we need to maximize the eigenvalues of each Av and Bp operators. Given that their
eigenvalues are ±1, it is clear that a lower bound on the energy is obtained when the ground
state |Ψ0〉 satisfies

Bp |Ψ0〉 = |Ψ0〉 ∀p, and Av |Ψ0〉 = |Ψ0〉 ∀v, (23)
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Figure 4: All possible vortex-free spin configurations for a single plaquette are shown, where we consider an arbitrary
plaquette p and only down spin |φ−1〉 states are green colored.

therefore any state that fulfills these two conditions will be a ground state of the system. Leaving
for the ground state energy E0 = −(Np + Nv), where Np and Nv stand for the number of
plaquettes and vertices present on the lattice.

Consider a plaquette operator acting on the states living on the boundary of an arbitrary
plaquette p, let us call this state |φp〉, such that

Bp |φp〉 = ± |φp〉 , (24)

notice that the eigenvalue of Bp will depend on the configuration of the four spin degrees of
freedom living on the edges along the plaquette p. In particular, if the plaquette operator has
eigenvalue 1 when applied to a particular state we say the state is vortex-free. Recalling that
the plaquette operator is a tensor product of Pauli matrices σz whose action on the basis states
{|φ1〉 , |φ−1〉} is given by:

σz |φ1〉 = |φ1〉 , σz |φ−1〉 = − |φ−1〉 , (25)

it is clear that the state will be a vortex-free one for configurations with an even number of
{|φ1〉 , |φ−1〉} states. We show all possible vortex-free states for a single plaquette in Fig.(4)
where we adopt a graphical representation in which the edges containing a |φ−1〉 state are green
colored.

Let us now look at the action of the vertex operator on a given state, we know the vertex
operator acts with σx on the 4 edges adjacent to the vertex in question, the action of this Pauli
operator on the basis states {|φ1〉 , |φ−1〉} is given by

σx |φ1〉 = |φ−1〉 , σx |φ−1〉 = |φ1〉 , (26)

this is, the vertex operator action consists on flipping the states on each edge from |φ1〉 to |φ−1〉
and viceversa, for instance let |v〉 = |φ1〉i1 ⊗ |φ1〉i2 ⊗ |φ1〉i3 ⊗ |φ1〉i4 , where i1, i2, i3 and i4 are
the four edges adjacent to an arbitrary vertex, the action of the vertex operator on this state is
given by:

Av = , (27)

where the edges holding |φ−1〉 states are green colored. In this sense, the vertex operator can
be understood as a local gauge transformation, equivalently we say that two configurations that
are related to each other by the action of a vertex operator are gauge equivalent. In Fig.(5) we
show several actions of the vertex operator on arbitrary states of a given vertex.

Let us go back to the analysis of the ground state |Ψ0〉 for the Hamiltonian defined in Eq.(12),
the first condition on Eq.(23) involving the plaquette operator restricts the configurations of the
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Figure 5: Some illustrative actions of the Vertex Operator Av are shown using the graphical representation for the
states, where the colored edges hold down spin |φ−1〉 states. We say that two states that are related by the

action of the vertex operator have gauge equivalent configurations.

ground states as being vortex-free, such as the ones shown in Fig.(4), therefore we can write the
most general ground state as [35, 21]

|Ψ0〉 =
∑

s:Bp|s〉=|s〉 ∀p

cs |s〉 , (28)

where |s〉 is a vortex-free state and the ground state |Ψ0〉 is a linear combination of all vortex-free
configurations. The second condition in Eq.(23) involving the vertex operator tells us that any
two configurations on a given vertex that are related to each other by the action of a vertex
operator will appear in the ground state with the same weight, this is, all coefficients cs are
required to be equal. Hence, a ground state of the toric code is an equal-weight superposition
of vortex free configurations.

The explicit form of such state is given by:

|Ψv
0〉 =

∏
v∈L

1√
2

(1 +Av)
⊗
l∈L
|φ1〉l , (29)

where the product runs over all vertices in the lattice and by the tensor product we mean that
each edge l of the lattice L carries a |φ1〉 state. The state |Ψ0〉 is indeed a ground state of the
Hamiltonian (12), i.e.

Av |Ψ0〉 = Bp |Ψ0〉 = |Ψ0〉 , ∀v, p ∈ L, (30)

as it an be shown by using the commutation relations between vertex and plaquette operators
[Av, Av′ ] = 0 = [Av, Bp].

Consequently, any product of vertex (plaquette) operators will act trivially on |Ψv
0〉, equiva-

lently, any operator Z(γ) or X(γ∗) where γ and γ∗ define contractible loops on the direct and
dual lattice, respectively, will act on |Ψv

0〉 in a trivial way. This ground state is interpreted as
being a Loop Gas, where the loops are the result of the action of vertex operators on the initial
configuration

⊗
l∈∂p |φ1〉l. Each term on the product of eq.(29) will produce a combination of

loops defined on the dual lattice and the ground state is a linear combination of all resulting
states, some of them are shown in Fig.(6).

The red closed loops on the graphical representation stand for the action of products of Av
operators on the state with all edges holding |φ1〉, it is in this sense that the ground state of
the Toric Code can be interpreted as a Loop Gas, containing all possible contractible loops
that could be defined on the lattice. From now on we consider the lattice to be embedded on
the surface of a Torus. We know the torus has two non-contractible loops. Thus, the operators
X(C ′1), X(C ′2), Z(C1) and Z(C2) can be defined and will not be made of products of vertex
or plaquette operators, correspondingly. The action of the X(C ′1) and X(C ′2) operators is to
create new ground states since they commute both with the vertex and plaquette operators
[19, 36, 37]. Consider the operator X(C ′1) where the path C ′1 winds the Torus along a horizontal
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(a) (b)

(c) (d)

Figure 6: Some illustrative constituents of the ground state |Ψv
0〉 are shown, where (a) corresponds to the first term in

the expansion of Eq.(29), (b) corresponds to a term in this expansion for which there is a single Av acting
on the |φ1〉 states around v, in (c) and (d) we show terms that include the action of several vertex operators.

non-contractible loop on the dual lattice, the action of this operator on the ground state |Ψv
0〉 is

given by:

X(C ′1) |Ψv
0〉 =

∏
v∈L

1√
2

(1 +Av)X(C ′1)
⊗
l∈L
|φ1〉l

=
∏
v∈L

1√
2

(1 +Av)
⊗
l /∈C′1

|φ1〉l
⊗
l′∈C′1

|φ−1〉l′ = |Ψv
1〉 , (31)

where in the first line we used the commutation relation [X(C ′1), Av] = 0, and the action of the
winding operator X(C ′1) on the basis states |φ1〉 along the non-contractible loop C ′1 consists on
changing them into |φ−1〉. Clearly this is still a ground state under the action of any vertex
operator Av, and it is straightforward to show that

Bp |Ψv
1〉 = |Ψv

1〉 . (32)

by noticing that the plaquette operators acting on edges being crossed by C ′1 will act trivially,
since loop C ′1 will necessarily cross any plaquette through two of its edges, therefore the configu-
ration of the degrees of freedom on the plaquettes will be those shown in Fig.(4), this is, vortex
free ones.

Thus, we have shown that this new state is a ground state of the Toric Code Hamiltonian.
Again it can be interpreted as a Loop Gas, some of its constituents are depicted in Fig.(7).
Notice that the particular path defined by C ′1 along the dual lattice is not relevant as long as
it winds the Torus through a non-contractible one, since all possible deformations of the path
are already contained in the Loop Gas. Since this dual path cannot be written as a product of
vertex operators, the ground state |Ψv

1〉 cannot be written in terms of |Ψv
0〉 Likewise, acting with

X(C ′2) on |Ψv
0〉 we can create another ground state, namely:

X(C ′2) |Ψv
0〉 = |Ψv

2〉 . (33)
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(a) (b)

(c) (d)

Figure 7: The path C′1 winds the torus along a non-contractible loop, the operator X(C′1) defined on this path
transforms the degrees of freedom that lie on C′1, the state |Ψv

1〉 is composed of all such transformations
that can be gotten by the action of vertex operators in L.

Also by acting with X(C ′1) and X(C ′2) simultaneously on |Ψv
0〉 we create another ground state,

i.e.:im
X(C ′1)X(C ′2) |Ψv

0〉 =
∣∣Ψv

1,2

〉
. (34)

Thus, |Ψv
0〉, |Ψv

1〉, |Ψv
2〉 and

∣∣Ψv
1,2

〉
are the four ground states of the Toric Code, and their

existence is guaranteed as long as the lattice is embedded on a Torus. Note that if we allow
the lattice to be embedded on a more general surface with genus g more ground states can be
constructed, depending on the number of homotopically inequivalent non-contractible loops that
can be defined on such surface. Hence the dependence of the ground state on the topological
properties of the surface the model is defined in.

The toric code Hamiltonian can be seen as a lattice gauge theory [20], in this framework the
degrees of freedom living on the edges of the lattice correspond to Z2 valued gauge degrees of
freedom, the vertex operator corresponds to a gauge transformation, and since it commutes with
the plaquette operator implies an overall gauge invariance. It is from this equivalence to a gauge
theory that the excitations of the toric code that come from violating one of the conditions in
Eq.(23) are commonly known as charges and fluxes as we will see in the next section.

3 Elementary Excitations

The elementary excitations of the Toric Code are the result of violating the constraints on
Eq.(23). From Eqs.(20) and (21) we know the eigenvalues of the vertex and plaquette operators
when acting on an eigenstate can only be ±1. Thus, an elementary excitation corresponds to an
eigenstate |Ψ〉 ∈ H such that for some vertex and/or plaquette operator it has eigenvalue −1.
This can be seen as follows, an operator that creates an excitation at some vertex and/or
plaquette of the lattice, is such that it anticommutes with the vertex (plaquette) operator in
question.
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3.1 Vertex Excitations: Charges

Consider the following state

|Ψz
i 〉 = 1⊗ 1⊗ · · · ⊗ σzi ⊗ · · · ⊗ 1 |Ψ0〉 , (35)

where |Ψ0〉 is some of the four ground states of the Toric Code Hamiltonian. This new state is no
longer a ground state of the model for the condition in Eq.(23) involving the vertex operator Av
does not hold anymore since the two vertex operators Av1 and Av2 sharing the i-th (see Fig.(8))
edge do not commute with the σz that is acting on it , this is:

Figure 8: We denote the action of the σz oper-
ator on i by coloring it blue and the
presence of an excitation of this type

is represented by a blue “x”.

Av1,v2 |Ψz
i 〉 = Av1,v2σ

z
i |Ψ0〉

= −σziAv1,v2 |Ψ0〉
= −σzi |Ψ0〉
= − |Ψz

i 〉

In this sense we say that the Pauli operator σzi cre-
ates two excitations located at vertices v1 and v2. The
energy of such excited state is then

Ev = −(Np +Nv − 2). (36)

Let us now consider an operator of the form:

Z(γ) =
⊗
j∈γ

σzj , (37)

where γ stands for am open path on the direct lattice, although we do not write it explicitly it
is understood that this operator is acting as identity on the lattice sites that are not part of the
path γ. This string operator as defined in Eq.(37) will anticommute with the vertex operators
acting on the endpoints of γ thus creating a pair of localized excitations which henceforth will
be called charges, as a consequence the excitations can be “moved” by simply extending the
path γ on the lattice, the energy of the excited state does not change since the number of vertex
operators being affected by the path operator is the same, eventually we can think on closing
the path thus creating a loop, in this case no pair of excitations is created since such operator
can be written as the product of Bp’s where the plaquettes are those enclosed by the path γ, in
§2.3 we have already shown that this kind of operators act trivially on a ground state.

3.2 Plaquette Excitations: Fluxes

Likewise, the excitations coming from the violation of the first constraint in Eq.(23) involving
the plaquette operator Bp are created by a string operator given by

X(γ∗) =
⊗
i∈γ∗

σxi , (38)

where γ∗ defines a path in the dual lattice such as the one shown in Fig.(9). The state given by
the action of this operator on a ground state |Ψ0〉 defined as:

|Ψx(γ∗)〉 = X(γ∗) |Ψ0〉 , (39)

is an excited state of the Hamiltonian carrying two localized excitations on the plaquettes where
the string operator X(γ∗) has its endpoints. As in the case of charges the energy of this excited
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state depends only on the number of plaquettes that are being afected by the path operator
X(γ∗) and since they always come in pairs the energy of the state is given by:

Ep = −(Np − 2 +Nv). (40)

Note that the states |Ψz(γ)〉 and |Ψx(γ∗)〉 and their corresponding energy do not depend on
the path itself, to illustrate this consider the state |Ψx(γ∗)〉 that has a pair of fluxes living on two
plaquettes p1 and p2, there are many paths on the dual lattice that join the aforesaid plaquettes,
analogously there is an equal number of path operators X(γ∗) that create this pair of fluxes.
We say that the state |Ψx(γ∗)〉 (and its energy) rather depend on the homotopy class3 of the
path γ∗ whereas the operators that map a given ground state into the excited states depend on
the path itself.

Figure 9: The operator X(γ∗) creates two localized excitations (red circles) at the plaquettes p1 and p2, we denote
the action of the σx operators on the edges of the lattice by coloring them red.

3.3 Fusion and the Dyonic Excitation

Let us now consider the case when we have pair of disconnected charges, by this we mean they
were created by means of two path operators Z(γ1) and Z(γ2) as depicted in Fig.(10), this state
is the result of the action of two string operators Z(γ1) and Z(γ2) on a ground state |Φ0〉, i.e.

|Ψz(γ1,2)〉 = Z(γ1)Z(γ2) |Ψ0〉 , (41)

consider this as being our initial state, now we decide to connect these two paths by extending
either γ2 or γ1 through an additional path γ3, on doing so note that the excitations that in
principle were sitting at the endpoints of both γ1 and γ2 annihilate with themselves as the
resulting operator Z(γ1 + γ2 + γ3) = Z(γ1)Z(γ2)Z(γ3) now commutes with the vertex operators
acting at v1 and v2. Thus, we say that the charge excitations are their own antiparticles, as
when we fuse them together they cancel each other:

e× e = 1, (42)

here e stands for the presence of a charge excitation at some vertex and 1 for the absence of
excitations at the given vertex.

In a similar manner, we can imagine the process of creating two disconnected flux excitations
each one sitting at arbitrary plaquettes p1 and p2 and then fusing the fluxes by extending one
of the dual paths. The result is an state where the two of the original fluxes were annihilated.
This induces the following fusion rule:

m×m = 1, (43)

3Two maps are said to be homotopically equivalent or to belong to the same homotopy class if one can be
continuously deformed into the another.
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(a) (b)

Figure 10: In (a) we show the initial configuration of the excited state |Ψz(γ1,2)〉. Then in (b) the path γ3 is an
extension of either γ1 or γ2.

where m stands for the presence of a flux on a particular plaquette. Moreover, consider a state
that is the outcome of a simultaneous application of string operators Z(γ) and X(γ∗) such that
they share one (or both) of its endpoints (see Fig.(11)), this is, there are operators σx and σz

being applied at the edge where the paths end. As discussed in §3.1 and §3.2 this process creates
a charge and a flux which in this case are regarded as a single excitation called Dyon.

Figure 11: The dyonic excitation is the result of fusing a charge together with a flux.

This can be interpreted as the fusion rule:

e×m = m× e = ε. (44)

From these three fusion rules we can deduce the following ones:

ε× e = m, ε×m = e, (45)

and for a matter of completeness we add the trivial fusion rules

1× 1 = 1, 1× e = e× 1 = e, 1×m = m× 1 = m, 1× ε = ε× 1 = ε. (46)

3.4 Braiding Statistics

We now study the statistical behavior of the elementary excitations of the model, namely the
charge e, the flux m and the dyon ε. This is, what happens to the overall state when we move
one of the excitations around another. To begin with, consider an state that has a pair of
localized charge excitations such as the initial configuration in Fig.(10); instead of fusing these
two charges together consider a process by which we exchange their position by applying two
path extensions Z(γ′1) and Z(γ′2) (see Fig.(12)).

Thus, the initial state |Ψz(γ1,2)〉 is the result of applying string operators Z(γ1) and Z(γ2)
on a ground state, as in Eq.(41), now, the exchange procedure is given by the action of operators
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Figure 12: The braiding of two charges by transporting them along the paths γ′1 and γ′2 (in purple). Note that both
these extension paths can be written as products of plaquette operators acting at p1 and p2.

Z(γ′1) and Z(γ′2), such that the final state would be:∣∣Ψz(γ1,2,1′,2′)
〉

= Z(γ′1)Z(γ′2) |Ψz(γ1,2)〉 , (47)

the two additional paths form a loop enclosing two plaquettes, namely p1 and p2, thus we can
write them as the product of plaquette operators, i.e., Z(γ′1)Z(γ′2) = Bp1Bp2 , therefore the state
defined in Eq.(47) can be written as:∣∣Ψz(γ1,2,1′,2′)

〉
= Bp1Bp2 |Ψz(γ1,2)〉 = |Ψz(γ1,2)〉 , (48)

in the last equality we note that the action of Bp1 and Bp2 on the initial state is trivial since
there are no flux excitations sitting at the mentioned plaquettes. Hence, the final state of the
system is the same as the initial one. The exchange of two charges leaves the state invariant,
thus signaling the bosonic nature of charges relative to themselves. A similar argument holds
for the exchange of two plaquette excitations or fluxes.

Figure 13: The braiding of a flux around a charge is described, the initial state contains a pair of charges at the
endpoints of the path γ (in blue) and a pair of fluxes at the endpoints of the dual path γ∗ (in red). Then

one of the fluxes is taken around one charge by means of the operator X(c∗).

On the other hand, consider the exchange of a charge and a flux. The initial state, containing
a pair of charges and a pair of fluxes, is given by

|Ψi〉 = Z(γ) |Ψx(γ∗)〉 = Z(γ)X(γ∗) |Ψ0〉 , (49)

where the paths γ and γ∗ are those depicted in Fig.(Fig.(13)), to move one of the fluxes around
one of the charges we extend the dual path γ∗ by means of another path on the dual lattice
which we call c∗. Thereby the final state will be given by

|Ψf 〉 = X(c∗) |Ψi〉 = X(c∗)Z(γ) |Ψx(γ∗)〉
= −Z(γ)X(c∗) |Ψx(γ∗)〉
= − |Ψi〉 , (50)
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where the minus sign in the third line comes from the fact that the operators Z(γ) and X(c∗)
anti commute at the edge where they cross each other and, in the last equality we used
X(c∗) |Ψx(γ∗)〉 = |Ψx(γ∗)〉 since the paths γ∗ and c∗ belong to the same homotopy class. Com-
paring Eq.(49) with Eq.(50) we notice that the process of moving one of the fluxes around one
charge induces an overall −1 phase to the state. The overall phase gained can be interpreted
as a Aharanov-Bohm effect. The existence of anyons is at the root of the topologically depen-
dent ground state degeneracy as argued in [14] and both are manifestations of the underlying
Topological Order of the model.

4 Final Remarks

In these notes we intended to discuss the so called topological phases of matter by a detailed
description of the simplest exactly solvable model that has Topological Order at zero tem-
perature, namely, the Toric Code that was introduced by A. Kitaev in [19], which is a many
body interaction model defined on a bi-dimensional lattice and described by a Hamiltonian that
consists on a sum of two kinds of mutually commuting projectors and are written in terms of
the well known Pauli Matrices. The model is exactly solvable and we explicitly construct the
ground state of the model which is a long range entangled gas of loops. Moreover, we show the
topological origin of the ground state degeneracy by means of operators whose domains are de-
termined by paths on the (dual) lattice, such that, when the lattice is embedded on the 2-torus,
these operators can wind the torus along two homotopically inequivalent non-contractible loops.
Such operators are responsible of the creation of more linearly independent ground states. The
elementary excitations of the model arise as violations of the ground state conditions of Eq.
(23) for the vertex and plaquette operators, thus they come in two species, labeled charges
and fluxes. Such excitations are localized quasi-particles as they are created at specific vertices
and/or plaquettes, they can be moved through the lattice sites at will without an energy cost.
More importantly, they can be braided around each other exhibiting their statistical features.
We show that the charges and fluxes are bosons when exchanged between themselves, while
the braiding of a charge around a flux (or a flux around a charge) is a fermionic process as
the state gains an overall −1 sign after an exchange, the same holds for the braiding of two
dyons. In [19] a more general class of models is also introduced, coined Quantum Double
Models. These are interpreted as the Hamiltonian formulation of a lattice gauge theory for a
finite and discrete symmetry group G. The model is defined through a Hamiltonian that is a
sum of quasi-local commuting projectors, thus making the model a exactly solvable one. The
elementary excitations of the QDM are obtained through the action of Ribbon Operators that
are a generalization of the String Operators that create the excitations of the Toric Code.
We do not include them in this manuscript as they are not within the scope of the present
work and we refer the reader to Kitaev’s original work [19], and [33, 38]. The QDM’s had been
widely studied during the recent years from various points of view. They exhibit topological
order. Their ground state is protected from local perturbations which makes them suitable for
implementing quantum error correcting codes; furthermore, the quasi particle excitations have
anyonic statistics whose braiding is used to implement the quantum gates that could ultimately
lead to a quantum computation process [19, 16, 29, 28, 26, 39].
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