Chapter 11 - Fluids

- Fluids flow - conform to shape of container - liquids OR gas
- Mass: mass density, Forces: Pressure
- Statics:
- pressure, buoyant force
- Dynamics: motion
- speed, energy
- friction: viscosity
- Human body 50-75\% water, live in a fluid (air)

Density

- Defined as:
- Or:

$$
\rho=\frac{M}{V}
$$

Typical densities:

Solids:

$\rho_{\text {Lead }}=11300 \mathrm{~kg} / \mathrm{m}^{3}$
$\rho_{\text {lron }}=7860 \mathrm{~kg} / \mathrm{m}^{3}$
Liquids:
$\rho_{\text {Mercury }}=13600 \mathrm{~kg} / \mathrm{m}^{3}$
$\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\rho_{\mathrm{oil}}=700-800 \mathrm{~kg} / \mathrm{m}^{3}$
Gases:
$\rho_{\mathrm{air}}=1.29 \mathrm{~kg} / \mathrm{m}^{3}$

- Specific gravity $=\rho / \rho_{\text {water at } 4^{\circ} \mathrm{C}}$
- $\rho_{\text {water at } 4^{\circ} \mathrm{C}}=1.0 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific gravity has no units

Pressure

- Fluid pressure arises from molecules of fluid colliding with:
- Walls of container
- Objects in gas or liquid
- If no molecules, pressure is zero (e.g. in vacuum of space)
- Pressure $=$ (Mag Force) $/$ Area ($\mathrm{P}=\mathrm{F} / \mathrm{A}$) (a scalar)
- units: SI: Pascals (N/m²). Other units: atm, lb/in² (psi) $1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}=14.7 \mathrm{lb} / \mathrm{in}^{2}=1.013 \mathrm{bar}$
- In equilibrium, Force perpendicular to the surface.
- Thumbtack, pop bottle, spheres

As you travel up a mountain, your ears pop. The figure below is a pitiful attempt to show the ear drum (in red). As you travel up a mountain, what will the ear drum do between 'pops'?

(1) Bow towards the middle ear
(2) Hold its shape
(3) Bow towards the outside

Pressure outside decreases.

Two pistons each have the same in the fluid just beneath them, and each fluid is at the same pressure just below the piston. Piston B has four times the surface area as piston A. Which piston can support the most weight? (consider the piston itself as part of the weight supported)

(1) Piston A
(2) Piston B
(3) Both the same
$\mathrm{F}=\mathrm{P}^{*} \mathrm{~A}: ~ S a m e ~ p r e s s u r e, ~ l a r g e r ~ a r e a, ~ l a r g e r ~ f o r c e ~$

Reminders

- Watch out for the final sprint!
- RQ\#10,11 due Monday 07/16 10am
- RQ\#12,13 due Tuesday 07/17 10am
- HW\#7 due Sunday 7/15, 11:59pm
- HW\#8 due Mon 7/16, 11:59pm
- HW\#9 due Tue 7/17, 11:59pm
- FINAL EXAM: Next Thursday (07/19).

Topics:

- Intro (Chapter 1)
- 1D and 2D Kinematics (Chapters 2 and 3).
- Newton' s Law and Forces (Chapter 4)
- Torques and equilibrium (Chapters 9, secs 1-3),
- Uniform Circular motion (chapter 5)
- Work and Energy (chapter 6)
- Momentum (Chapter 7)
- Fluids (Chapter 11) (today and Monday)
- Rotational Kinematics and Dynamics (Chapter 8) (Tuesday) (including Lab-related material).

A container is filled with oil and fitted on both ends with pistons. The are of the left piston is $10 \mathrm{~mm}^{2}$. The area of the right piston is $10,000 \mathrm{~mm}^{2}$. What force must be exerted on the left piston to keep the $10,000-\mathrm{N}$ car on the right at the same height?

(1) 10 N
(2) 100 N
(3) $10,000 \mathrm{~N}$
(4) $10^{6} \mathrm{~N}$
(5) $10^{8} \mathrm{~N}$

$$
\begin{aligned}
& \mathrm{P}=\mathrm{F}_{1} / \mathrm{A}_{1}=\mathrm{F}_{2} / \mathrm{A}_{2} \\
& \mathrm{~F}_{1}=\left(\mathrm{A}_{1} / \mathrm{A}_{2}\right) \mathrm{F}_{2} \\
& \mathrm{~F}_{1}=\left(10 \mathrm{~mm}^{2} / 10,000 \mathrm{~mm}^{2}\right) * 10,000 \mathrm{~N}
\end{aligned}
$$

Pressure as Function of Depth

Static Fluid

(Fluid at rest)
$P_{2} A=P_{1} A+m g$

$$
P_{2}=P_{1}+\rho g h
$$

Densities vary from fluid to fluid.
$\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\rho_{\text {air }}=1.3 \mathrm{~kg} / \mathrm{m}^{3}$

(b) Free-body diagram of the column

Deepest Fish

Deepest fish ever sighted was on the floor of the Mariana's trench at $11,500 \mathrm{~m}$ depth. What is the pressure here?

$$
\begin{aligned}
& P=P_{0}+\rho g h \\
&=1.013 \times 10^{5} \mathrm{~Pa}+\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
&(11,500 \mathrm{~m}) \\
&=1.013 \times 10^{5} \mathrm{~Pa}+1.127 \times 10^{8} \mathrm{~Pa} \\
&=1.128 \times 10^{8} \mathrm{~Pa}
\end{aligned}
$$

What would be the inward force on a 20 cm diameter circular window on a sub?

$$
\begin{aligned}
\mathrm{F}=\mathrm{P}^{*} \mathrm{~A} & =1.128 \times 10^{8} \mathrm{~Pa}^{*} \pi(0.10)^{2} \\
& =3.54 \times 10^{6} \mathrm{~N} \quad\left(8 \times 10^{5} \text { lbs or } 400 \text { tons }\right)
\end{aligned}
$$

Consider the four points in the lake. The points are all at the same depth below the surface, but the depth of the bottom of the lake underneath the points varies. At which point is the pressure the greatest?

(1) A
(2) B
(3) C
(4) D (5) All the same

Pressure only depends on depth of point where pressure is measured.

Two beakers are filled with fluid. One is filled with water. The other is filled with a mixture of oil (specific gravity 0.8) and water to the same level. Which beaker has the greatest pressure at the bottom of the beaker.

(1) The Water beaker
(2) The Oil and Water beaker
(3) Both the same

Pressure at depth where oil and water meet is lower in the oil and water mixture (oil less dense).

Increase in pressure from this level is same, since water in both columns.

Measuring Pressure

$\mathbf{P}=$ Force/Area

- Absolute Pressure, P
- Gauge Pressure $=P-P_{\mathrm{o}}$
- $P_{\mathrm{o}}=$ Atmospheric Pressure

$$
=1.01 \times 10^{5} \mathrm{~Pa}=1 \mathrm{~atm}=760 \mathrm{~mm} \text { of } \mathrm{Hg}
$$

Barometer

$$
P=P_{o}+\rho g h
$$

Blood Pressure

Archimedes' Principle - Buoyancy

- Difference in pressure
- Any time in fluid, buoyant force upwards
- What determines force?
- $F_{B}=$ weight of fluid displaced
- $F_{B}=\rho_{\text {FLUID }} g V_{\text {FLUID DISPLACED }}$

Archimedes' principle

An immersed body is buoyed up by a force equal to the weight of the fluid it displaces

Flotation

If an object floats \rightarrow buoyant force is equal to its weight
\rightarrow its density < that of fluid's

Floating versus Completely Submerged

- Floating:

$$
\mathrm{F}_{\mathrm{B}}=\mathrm{W} \quad \mathrm{~V}_{\text {DISPLACED }}<\mathrm{V}_{\text {OBJECT }} \quad \rho_{\mathrm{OBJ}}<\rho_{\text {FLUID }}
$$

- Completely Submerged (it sinks!) $\rho_{\mathrm{OBJ}}>\rho_{\mathrm{FLUID}}$ $\mathrm{V}_{\text {DISPLACED }}=\mathrm{V}_{\text {OBJECT }}$ $F_{B}=\rho g V_{\text {OBJECT }}$

Example: If ice has a density of $920 \mathrm{~kg} / \mathrm{m}^{3}$, what percentage of an iceberg sticks out above the waterline?

About 8\% (92\% under water)

Flotation - denser fluid

We will float "easier" in denser fluids \rightarrow Dead Sea float!

Why? Salt water is more dense.
$\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\rho_{\text {Dead Sea Water }}=1170 \mathrm{~kg} / \mathrm{m}^{3}$

Consider two identical glasses. One contains water. One contains a combination of ice and water. The water level is the same in both glasses. Which weighs more?

(1) The glass without ice cubes
(2) The glass with ice cubes
(3) The two weigh the same

Ice less dense, but occupies more volume.
Each cube displaces the weight of the cube in water.
Think of the following: two beakers filled to the edge with water. Add an ice cube. The weight of the fluid lost over the edge equals the weight of the ice cube.

Fluids in Motion

- Ideal Fluid:
- incompressible: density constant
- nonviscous: no friction between layers

Flow:

- Steady: v doesn't change at point
- Unsteady: v changes magnitude
- Turbulent: v erratic

Streamline

Equation of Continuity

$$
\begin{aligned}
& \mathrm{m}=\rho \mathrm{Vol} \\
& \mathrm{~m}=\rho(\mathrm{A} \vee \Delta \mathrm{t}) \\
& \mathrm{m} / \Delta \mathrm{t}=\rho \mathrm{A} v=\text { mass flow rate }
\end{aligned}
$$

Equation of continuity: $\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$

If incompressible fluid:

$$
Q=A_{1} v_{1}=A_{2} v_{2}
$$

Q: Volume flow rate

Example:
Block off the end of a hose: Less A, higher v

An incompressible fluid is flowing through a pipe. At which point is the fluid traveling the fastest?

(6) All points have the same speed

$$
\begin{array}{llll}
1 & 2 & 4 & 5
\end{array}
$$

Smallest cross-sectional area, highest speed

Bernoulli's Equation

What if the fluid is moving and changes height? Need to consider change in gravitational PE!

$$
\begin{array}{lcc}
\mathrm{W}_{\mathrm{NC}}= & \Delta \mathrm{KE} \quad+\quad \Delta \mathrm{PE} \\
\Delta \text { Pressure.A } & (1 / 2) \mathrm{mv}^{2} & \mathrm{mgh}
\end{array}
$$

4b)

For two points in incompressible, nonviscous fluid with steady flow:

$$
\mathrm{P}_{1}+(1 / 2) \rho \mathrm{v}_{1}^{2}+\rho g y_{1}=\mathrm{P}_{2}+(1 / 2) \rho v_{2}^{2}+\rho g y_{2}
$$

Careful! In many cases continuity determines speed!

An incompressible fluid flows through a pipe. Compare the pressure at points 1 and 2.

(1) Greater at 1
 (2) Greater at 2
 (3) Both the same
 (4) Not enough information

$\mathrm{P}+(1 / 2) \rho v^{2}+\rho g h=\mathrm{constant}$
(1/2) ρv^{2} is larger (higher v due to smaller A)
$\rho g h$ is larger (higher)
Therefore

Consider a small, horizontal artery in which there is a constriction due to plaque. This constriction reduces the cross sectional area of the artery. The pressure in the constricted region is ___ the pressure in the unconstricted region.

1. greater than

2. less than
3. the same as

Continuity: greater speed in constriction
Bernoulli: greater speed, lower pressure
Vascular flutter: If pressure too low, can close, then open, close, then open,

I will attempt to levitate a beach ball using an air blower. Under which scenarios will the beach ball levitate in a stable state (it may bounce around a little, but it won't fall).

(1) A
(2) B
(3) C
(4) None
(6) A and B
(7) B and C
(8) A and C
(5) All

Gravity has to bring the ball back closer to the nozzle to keep the speed of the air high enough.

Example:

Calculate the lift force of an airplane wing with a surface area of $12.0 \mathrm{~m}^{2}$. Assume the air above the wing is traveling at $70.0 \mathrm{~m} / \mathrm{s}$ and the air below the wing is traveling at $60.0 \mathrm{~m} / \mathrm{s}$. Assume the density of the air to be constant at $1.29 \mathrm{~kg} / \mathrm{m}^{3}$.

$$
\begin{aligned}
\mathrm{F}_{\text {LIFT }} & =F_{\text {UP }}-F_{\text {DOWN }} \\
& =P_{\text {BELOW }} A-P_{\text {ABOVE }} A \\
& =(\Delta P) A
\end{aligned}
$$

From Bernoulli, find (ΔP) assuming Δy negligible.

$$
\begin{aligned}
& P_{A}+(1 / 2) \rho v_{A}^{2}+\rho g y_{A}=P_{B}+(1 / 2) \rho v_{B}^{2}+\rho g y_{B} \\
& (\Delta P)=P_{B}-P_{A}=\left((1 / 2) \rho v_{A}^{2}-(1 / 2) \rho v_{B}^{2}\right)+\left(\rho g y_{A}-\rho g y_{B}\right)
\end{aligned}
$$

$$
\text { (assume } \triangle \mathrm{PE} \text { negligible - if } \mathrm{y}_{\mathrm{A}}-\mathrm{y}_{\mathrm{B}}=10 \mathrm{~cm} \text {, only } 1.26 \mathrm{~Pa} \text {) }
$$

$$
\Delta \mathrm{P}=(1 / 2)(1.29)\left(70^{2}-60^{2}\right)=838.5 \mathrm{~Pa}
$$

$$
F_{\text {LIFT }}=(838.5 \mathrm{~Pa})\left(12 \mathrm{~m}^{2}\right)=1.01 \times 10^{4} \mathrm{~N}
$$

The Water Tank

Water is leaving a tank at a speed of $3.0 \mathrm{~m} / \mathrm{s}$. The tank is open to air on the top. What is the height of the water level above the spigot?
Assume the area of the tank is much larger than the area of the spigot.
$\mathrm{P}_{2}+\mathrm{\rho gh}_{2}=\mathrm{P}_{1}+\rho \mathrm{gh}_{1}+(1 / 2) \rho\left(\mathrm{v}_{1}\right)^{2}$
Since $\mathrm{P}_{1}=\mathrm{P}_{2}$
$\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{h}=0.459 \mathrm{~m}$
What would happen if the tank were

Chapter 11

$$
\begin{aligned}
& \rho=\frac{M}{V} \quad \mathrm{~m} / \Delta \mathrm{t}=\rho \mathrm{A} \mathrm{v}=\text { mass flow rate } \\
& \mathrm{P}=\mathrm{F} / \mathrm{A} \quad \rho_{1} \mathrm{~A}_{1} \mathrm{v}_{1}=\rho_{2} \mathrm{~A}_{2} \mathrm{v}_{2} \\
& \mathrm{~F}_{\mathrm{B}}= \\
& \begin{array}{l}
\text { weight of fluid displaced } \\
\\
=\rho_{\mathrm{FLUID}} \mathrm{~g} \mathrm{~V}_{\mathrm{FLUID} \text { DISPLACED }}
\end{array} \\
& \mathrm{P}_{1}+(1 / 2) \rho \mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2} \\
& \hline \mathrm{ggy}_{1}=\mathrm{P}_{2}+(1 / 2) \rho \mathrm{v}_{2}^{2}+\rho \mathrm{gy}_{2} \\
& Q
\end{aligned}
$$

